Cargando…
A novel ABA functional analogue B2 enhances drought tolerance in wheat
Drought stress negatively affects wheat growth and yield. Application of drought agent is an effective way to improve crop drought tolerance, therefore increasing crop yield. Based on the structure of abscisic acid (ABA), Pyrabactin and coronatine (COR), we designed the target compound B2. To invest...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393525/ https://www.ncbi.nlm.nih.gov/pubmed/30814574 http://dx.doi.org/10.1038/s41598-019-39013-8 |
Sumario: | Drought stress negatively affects wheat growth and yield. Application of drought agent is an effective way to improve crop drought tolerance, therefore increasing crop yield. Based on the structure of abscisic acid (ABA), Pyrabactin and coronatine (COR), we designed the target compound B2. To investigate the function of B2 in alleviating drought stress on wheat, the drought-resistant variety ND212 and drought-sensitive variety LX99 were used under hydroponic conditions. The results showed that B2 had a similar function with ABA, especially 0.01 μmol·L(−1) B2. Under drought stress conditions, 0.01 μmol·L(−1) B2 increased the water content of wheat, enhanced the osmotic adjustment ability of leaves, and reduced the toxicity of reactive oxygen species on cells. What’s more, 0.01 μmol·L(−1) B2 improved the expression level of ABA-responsive genes TaSnRK2.4 and TaMYB3R1. It also improved the expression level of drought-responsive genes TaSRHP and TaERF3. Taken together, B2 enhanced drought tolerance in wheat by activating ABA signaling pathway. |
---|