Cargando…
Rice Blast Disease Recognition Using a Deep Convolutional Neural Network
Rice disease recognition is crucial in automated rice disease diagnosis systems. At present, deep convolutional neural network (CNN) is generally considered the state-of-the-art solution in image recognition. In this paper, we propose a novel rice blast recognition method based on CNN. A dataset of...
Autores principales: | Liang, Wan-jie, Zhang, Hong, Zhang, Gu-feng, Cao, Hong-xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393546/ https://www.ncbi.nlm.nih.gov/pubmed/30814523 http://dx.doi.org/10.1038/s41598-019-38966-0 |
Ejemplares similares
-
A Recognition Method for Rice Plant Diseases and Pests Video Detection Based on Deep Convolutional Neural Network
por: Li, Dengshan, et al.
Publicado: (2020) -
Convolutional neural network in rice disease recognition: accuracy, speed and lightweight
por: Ning, Hongwei, et al.
Publicado: (2023) -
Wheat Spike Blast Image Classification Using Deep Convolutional Neural Networks
por: Fernández-Campos, Mariela, et al.
Publicado: (2021) -
Hypertuned Deep Convolutional Neural Network for Sign Language Recognition
por: Mannan, Abdul, et al.
Publicado: (2022) -
Deep convolutional neural networks for regular texture recognition
por: Liu, Ni, et al.
Publicado: (2022)