Cargando…

Enantioselective Rhodium-Catalyzed Cycloisomerization of 1,6-Allenynes to access 5/6-Fused Bicycle[4.3.0]nonadienes

Transition-metal-catalyzed cycloisomerization of 1,n-allenynes represents a powerful synthetic tool to rapidly assemble complex polycyclic skeletons from simple linear substrates. Nevertheless, there are no reports of the asymmetric version of these reactions. Moreover, most of these reactions proce...

Descripción completa

Detalles Bibliográficos
Autores principales: Deng, Xu, Shi, Li-Yang, Lan, Jialing, Guan, Yu-Qing, Zhang, Xiaoyong, Lv, Hui, Chung, Lung Wa, Zhang, Xumu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393573/
https://www.ncbi.nlm.nih.gov/pubmed/30814517
http://dx.doi.org/10.1038/s41467-019-08900-z
_version_ 1783398721458798592
author Deng, Xu
Shi, Li-Yang
Lan, Jialing
Guan, Yu-Qing
Zhang, Xiaoyong
Lv, Hui
Chung, Lung Wa
Zhang, Xumu
author_facet Deng, Xu
Shi, Li-Yang
Lan, Jialing
Guan, Yu-Qing
Zhang, Xiaoyong
Lv, Hui
Chung, Lung Wa
Zhang, Xumu
author_sort Deng, Xu
collection PubMed
description Transition-metal-catalyzed cycloisomerization of 1,n-allenynes represents a powerful synthetic tool to rapidly assemble complex polycyclic skeletons from simple linear substrates. Nevertheless, there are no reports of the asymmetric version of these reactions. Moreover, most of these reactions proceed through a 6-endo-dig cyclization pathway, which preferentially delivers the distal product (via 5/5 rhodacyclic intermediate) rather than the proximal one (via 6/5 rhodacyclic intermediate). Herein, we report an enantioselective rhodium(I)-catalyzed cycloisomerization of 1,6-allenynes to provide the proximal product 5/6-fused bicycle[4.3.0]nonadienes in good yields and with excellent enantioselectivities. Remarkably, this chemistry works perfectly for 1,6-allenynes having a cyclic substituent within the allene component, thereby affording synthetically formidable tricyclic products with excellent enantioselectivities. Moreover, extensive DFT calculations suggest an uncommon pathway involving 5-exo-dig cycloisomerization, ring-expansion, rate-determining alkene isomerization involving C(sp3)-H activation, C-C activation of the cyclobutene moiety and finally reductive elimination. Deuterium labeling experiments support the rate-determining step involving the C–H bond activation in this transformation.
format Online
Article
Text
id pubmed-6393573
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-63935732019-03-01 Enantioselective Rhodium-Catalyzed Cycloisomerization of 1,6-Allenynes to access 5/6-Fused Bicycle[4.3.0]nonadienes Deng, Xu Shi, Li-Yang Lan, Jialing Guan, Yu-Qing Zhang, Xiaoyong Lv, Hui Chung, Lung Wa Zhang, Xumu Nat Commun Article Transition-metal-catalyzed cycloisomerization of 1,n-allenynes represents a powerful synthetic tool to rapidly assemble complex polycyclic skeletons from simple linear substrates. Nevertheless, there are no reports of the asymmetric version of these reactions. Moreover, most of these reactions proceed through a 6-endo-dig cyclization pathway, which preferentially delivers the distal product (via 5/5 rhodacyclic intermediate) rather than the proximal one (via 6/5 rhodacyclic intermediate). Herein, we report an enantioselective rhodium(I)-catalyzed cycloisomerization of 1,6-allenynes to provide the proximal product 5/6-fused bicycle[4.3.0]nonadienes in good yields and with excellent enantioselectivities. Remarkably, this chemistry works perfectly for 1,6-allenynes having a cyclic substituent within the allene component, thereby affording synthetically formidable tricyclic products with excellent enantioselectivities. Moreover, extensive DFT calculations suggest an uncommon pathway involving 5-exo-dig cycloisomerization, ring-expansion, rate-determining alkene isomerization involving C(sp3)-H activation, C-C activation of the cyclobutene moiety and finally reductive elimination. Deuterium labeling experiments support the rate-determining step involving the C–H bond activation in this transformation. Nature Publishing Group UK 2019-02-27 /pmc/articles/PMC6393573/ /pubmed/30814517 http://dx.doi.org/10.1038/s41467-019-08900-z Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Deng, Xu
Shi, Li-Yang
Lan, Jialing
Guan, Yu-Qing
Zhang, Xiaoyong
Lv, Hui
Chung, Lung Wa
Zhang, Xumu
Enantioselective Rhodium-Catalyzed Cycloisomerization of 1,6-Allenynes to access 5/6-Fused Bicycle[4.3.0]nonadienes
title Enantioselective Rhodium-Catalyzed Cycloisomerization of 1,6-Allenynes to access 5/6-Fused Bicycle[4.3.0]nonadienes
title_full Enantioselective Rhodium-Catalyzed Cycloisomerization of 1,6-Allenynes to access 5/6-Fused Bicycle[4.3.0]nonadienes
title_fullStr Enantioselective Rhodium-Catalyzed Cycloisomerization of 1,6-Allenynes to access 5/6-Fused Bicycle[4.3.0]nonadienes
title_full_unstemmed Enantioselective Rhodium-Catalyzed Cycloisomerization of 1,6-Allenynes to access 5/6-Fused Bicycle[4.3.0]nonadienes
title_short Enantioselective Rhodium-Catalyzed Cycloisomerization of 1,6-Allenynes to access 5/6-Fused Bicycle[4.3.0]nonadienes
title_sort enantioselective rhodium-catalyzed cycloisomerization of 1,6-allenynes to access 5/6-fused bicycle[4.3.0]nonadienes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393573/
https://www.ncbi.nlm.nih.gov/pubmed/30814517
http://dx.doi.org/10.1038/s41467-019-08900-z
work_keys_str_mv AT dengxu enantioselectiverhodiumcatalyzedcycloisomerizationof16allenynestoaccess56fusedbicycle430nonadienes
AT shiliyang enantioselectiverhodiumcatalyzedcycloisomerizationof16allenynestoaccess56fusedbicycle430nonadienes
AT lanjialing enantioselectiverhodiumcatalyzedcycloisomerizationof16allenynestoaccess56fusedbicycle430nonadienes
AT guanyuqing enantioselectiverhodiumcatalyzedcycloisomerizationof16allenynestoaccess56fusedbicycle430nonadienes
AT zhangxiaoyong enantioselectiverhodiumcatalyzedcycloisomerizationof16allenynestoaccess56fusedbicycle430nonadienes
AT lvhui enantioselectiverhodiumcatalyzedcycloisomerizationof16allenynestoaccess56fusedbicycle430nonadienes
AT chunglungwa enantioselectiverhodiumcatalyzedcycloisomerizationof16allenynestoaccess56fusedbicycle430nonadienes
AT zhangxumu enantioselectiverhodiumcatalyzedcycloisomerizationof16allenynestoaccess56fusedbicycle430nonadienes