Cargando…

Effect of nozzle geometry on critical-subcritical flow transitions

The geometry of converging-diverging nozzles affects the conditions at which critical-subcritical flow transition occurs. The objective of this work is to develop guidelines to identify the optimum nozzle geometry that maximizes critical pressure ratio while minimizing pressure drop across the nozzl...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Jagmit, Zerpa, Luis E., Partington, Benjamin, Gamboa, Jose
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393696/
https://www.ncbi.nlm.nih.gov/pubmed/30886925
http://dx.doi.org/10.1016/j.heliyon.2019.e01273
Descripción
Sumario:The geometry of converging-diverging nozzles affects the conditions at which critical-subcritical flow transition occurs. The objective of this work is to develop guidelines to identify the optimum nozzle geometry that maximizes critical pressure ratio while minimizing pressure drop across the nozzle. Experiments were conducted in a facility with 1.5 in. ID PVC pipelines and a 30 ft. long lateral pipeline section. In total, 27 different nozzle geometries were tested, divided into two groups – conical and parabolic nozzles. Nozzles from the ASTAR, Deich, LJ and Moby Dick nozzle groups showed improved performance compared to other nozzle groups. It was determined that a smaller diverging angle and absence of an elongated throat resulted in a higher critical pressure ratio. Length of converging and diverging sections of nozzles did not have as much of an impact on nozzle performance as the throat diameter and shape of converging and diverging sections.