Cargando…
Detection Analysis of Epileptic EEG Using a Novel Random Forest Model Combined With Grid Search Optimization
In the automatic detection of epileptic seizures, the monitoring of critically ill patients with time varying EEG signals is an essential procedure in intensive care units. There is an increasing interest in using EEG analysis to detect seizure, and in this study we aim to get a better understanding...
Autores principales: | Wang, Xiashuang, Gong, Guanghong, Li, Ni, Qiu, Shi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393755/ https://www.ncbi.nlm.nih.gov/pubmed/30846934 http://dx.doi.org/10.3389/fnhum.2019.00052 |
Ejemplares similares
-
Automated Recognition of Epileptic EEG States Using a Combination of Symlet Wavelet Processing, Gradient Boosting Machine, and Grid Search Optimizer
por: Wang, Xiashuang, et al.
Publicado: (2019) -
Epileptic prediction using spatiotemporal information combined with optimal features strategy on EEG
por: Zhong, Lisha, et al.
Publicado: (2023) -
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018) -
EEG Channel-Selection Method for Epileptic-Seizure Classification Based on Multi-Objective Optimization
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2020) -
Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers
por: Zeng, Wei, et al.
Publicado: (2023)