Cargando…
Predicting life expectancy with a long short-term memory recurrent neural network using electronic medical records
BACKGROUND: Life expectancy is one of the most important factors in end-of-life decision making. Good prognostication for example helps to determine the course of treatment and helps to anticipate the procurement of health care services and facilities, or more broadly: facilitates Advance Care Plann...
Autores principales: | Beeksma, Merijn, Verberne, Suzan, van den Bosch, Antal, Das, Enny, Hendrickx, Iris, Groenewoud, Stef |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394008/ https://www.ncbi.nlm.nih.gov/pubmed/30819172 http://dx.doi.org/10.1186/s12911-019-0775-2 |
Ejemplares similares
-
Analyzing Empowerment Processes Among Cancer Patients in an Online Community: A Text Mining Approach
por: Verberne, Suzan, et al.
Publicado: (2019) -
Structure in neural population recordings: an expected byproduct of
simpler phenomena?
por: Elsayed, Gamaleldin F., et al.
Publicado: (2017) -
Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks
por: Zazo, Ruben, et al.
Publicado: (2016) -
Long short-term memory (LSTM) recurrent neural network for muscle activity detection
por: Ghislieri, Marco, et al.
Publicado: (2021) -
Predicting machine's performance record using the stacked long short‐term memory (LSTM) neural networks
por: Ma, Min, et al.
Publicado: (2022)