Cargando…
Burn image segmentation based on Mask Regions with Convolutional Neural Network deep learning framework: more accurate and more convenient
BACKGROUND: Burns are life-threatening with high morbidity and mortality. Reliable diagnosis supported by accurate burn area and depth assessment is critical to the success of the treatment decision and, in some cases, can save the patient’s life. Current techniques such as straight-ruler method, as...
Autores principales: | Jiao, Chong, Su, Kehua, Xie, Weiguo, Ye, Ziqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394103/ https://www.ncbi.nlm.nih.gov/pubmed/30859107 http://dx.doi.org/10.1186/s41038-018-0137-9 |
Ejemplares similares
-
Accurate Tumor Segmentation via Octave Convolution Neural Network
por: Wang, Bo, et al.
Publicado: (2021) -
Segmentation of Overlapping Cervical Cells with Mask Region Convolutional Neural Network
por: Chen, Jiajia, et al.
Publicado: (2021) -
MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning
por: Müller, Dominik, et al.
Publicado: (2021) -
Deep convolutional neural networks for accurate somatic mutation detection
por: Sahraeian, Sayed Mohammad Ebrahim, et al.
Publicado: (2019) -
Accurate and robust segmentation of neuroanatomy in T1‐weighted MRI by combining spatial priors with deep convolutional neural networks
por: Novosad, Philip, et al.
Publicado: (2019)