Cargando…

miR-193a-3p Promotes Radio-Resistance of Nasopharyngeal Cancer Cells by Targeting SRSF2 Gene and Hypoxia Signaling Pathway

BACKGROUND: Radio-resistance is an important barrier in nasopharyngeal carcinoma treatment. MicroRNAs are gene expression core regulators in various biological procedures containing cancer radio-resistance. Nevertheless, the clinical association between nasopharyngeal carcinoma and miR-193a-3p/SRSF2...

Descripción completa

Detalles Bibliográficos
Autores principales: Kong, Lingsuo, Wei, Qing, Hu, Xianwen, Chen, Lanren, Li, Juan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394146/
https://www.ncbi.nlm.nih.gov/pubmed/30773530
http://dx.doi.org/10.12659/MSMBR.914572
Descripción
Sumario:BACKGROUND: Radio-resistance is an important barrier in nasopharyngeal carcinoma treatment. MicroRNAs are gene expression core regulators in various biological procedures containing cancer radio-resistance. Nevertheless, the clinical association between nasopharyngeal carcinoma and miR-193a-3p/SRSF2 remains unclear. MATERIAL/METHODS: We examined the miR-193a-3p level in radio-sensitive CNE-2 and radio-resistant CNE-1 NPC cell lines, and, based on a literature review, predicted SRSF2 to be the target gene of miR-193a-3p. We explored the expression of SRSF2 at protein and mRNA levels by transfecting either miR-193a-3p-mimic or antagomiR. Finally, we performed signaling pathway analysis to assess the possible role of miR-193a-3p/SRSF2 in signaling pathways. RESULTS: miR-193a-3p promotes NPC radio-resistance, and the SRSF2 gene is the direct target for miR-193a-3p in NPC, and thus is negatively correlated with NPC radio-resistance. The hypoxia signaling pathway activity is strongly affected, and it is possible to use the downstream activity of the SRSF2 gene to show the effect of miR-193a-3p on radio-resistance in NPC cells. CONCLUSIONS: miR-193a-3p mediates promotion of NPC radio-resistance.