Cargando…
Some methods to improve the utility of conditioned Latin hypercube sampling
The conditioned Latin hypercube sampling (cLHS) algorithm is popularly used for planning field sampling surveys in order to understand the spatial behavior of natural phenomena such as soils. This technical note collates, summarizes, and extends existing solutions to problems that field scientists f...
Autores principales: | Malone, Brendan P., Minansy, Budiman, Brungard, Colby |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394343/ https://www.ncbi.nlm.nih.gov/pubmed/30828486 http://dx.doi.org/10.7717/peerj.6451 |
Ejemplares similares
-
A new method for selecting sites for soil sampling, coupling global weighted principal component analysis and a cost-constrained conditioned Latin hypercube algorithm
por: Nketia, Kwabena Abrefa, et al.
Publicado: (2019) -
An improved typhoon simulation method based on Latin hypercube sampling method
por: Sun, Jian-peng, et al.
Publicado: (2022) -
Description and spatial inference of soil drainage using matrix soil colours in the Lower Hunter Valley, New South Wales, Australia
por: Malone, Brendan P., et al.
Publicado: (2018) -
Taking account of uncertainties in digital land suitability assessment
por: Malone, Brendan P., et al.
Publicado: (2015) -
Random Traffic Flow Simulation of Heavy Vehicles Based on R-Vine Copula Model and Improved Latin Hypercube Sampling Method
por: Lu, Hailin, et al.
Publicado: (2023)