Cargando…

Oxidative stress and the presence of bacteria increase gene expression of the antimicrobial peptide aclasin, a fungal CSαβ defensin in Aspergillus clavatus

BACKGROUND: Antimicrobial peptides (AMPs) represent a broad class of naturally occurring antimicrobial compounds. Plants, invertebrates and fungi produce various AMPs as, for example, defensins. Most of these defensins are characterised by the presence of a cysteine-stabilised α-helical and β-sheet...

Descripción completa

Detalles Bibliográficos
Autores principales: Contreras, Gabriela, Wang, Nessa, Schäfer, Holger, Wink, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394349/
https://www.ncbi.nlm.nih.gov/pubmed/30828484
http://dx.doi.org/10.7717/peerj.6290
Descripción
Sumario:BACKGROUND: Antimicrobial peptides (AMPs) represent a broad class of naturally occurring antimicrobial compounds. Plants, invertebrates and fungi produce various AMPs as, for example, defensins. Most of these defensins are characterised by the presence of a cysteine-stabilised α-helical and β-sheet (CSαβ) motif. The changes in gene expression of a fungal CSαβ defensin by stress conditions were investigated in Aspergillus clavatus. A. clavatus produces the CSαβ defensin Aclasin, which is encoded by the aclasin gene. METHODS: Aclasin expression was evaluated in submerged mycelium cultures under heat shock, osmotic stress, oxidative stress and the presence of bacteria by quantitative real-time PCR. RESULTS: Aclasin expression increased two fold under oxidative stress conditions and in the presence of viable and heat-killed Bacillus megaterium. Under heat shock and osmotic stress, aclasin expression decreased. DISCUSSION: The results suggest that oxidative stress and the presence of bacteria might regulate fungal defensin expression. Moreover, fungi might recognise microorganisms as plants and animals do.