Cargando…
Benchmarking optimization methods for parameter estimation in large kinetic models
MOTIVATION: Kinetic models contain unknown parameters that are estimated by optimizing the fit to experimental data. This task can be computationally challenging due to the presence of local optima and ill-conditioning. While a variety of optimization methods have been suggested to surmount these is...
Autores principales: | Villaverde, Alejandro F, Fröhlich, Fabian, Weindl, Daniel, Hasenauer, Jan, Banga, Julio R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394396/ https://www.ncbi.nlm.nih.gov/pubmed/30816929 http://dx.doi.org/10.1093/bioinformatics/bty736 |
Ejemplares similares
-
Efficient parameterization of large-scale dynamic models based on relative measurements
por: Schmiester, Leonard, et al.
Publicado: (2019) -
Parameter identifiability analysis and visualization in large-scale kinetic models of biosystems
por: Gábor, Attila, et al.
Publicado: (2017) -
Efficient gradient-based parameter estimation for dynamic models using qualitative data
por: Schmiester, Leonard, et al.
Publicado: (2021) -
A protocol for dynamic model calibration
por: Villaverde, Alejandro F, et al.
Publicado: (2021) -
PESTO: Parameter EStimation TOolbox
por: Stapor, Paul, et al.
Publicado: (2018)