Cargando…
Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas
PURPOSE: Reliable and accurate predictive models are necessary to drive the success of radiomics. Our aim was to identify the optimal radiomics-based machine learning method for isocitrate dehydrogenase (IDH) genotype prediction in diffuse gliomas. METHODS: Eight classical machine learning methods w...
Autores principales: | Wu, Shuang, Meng, Jin, Yu, Qi, Li, Ping, Fu, Shen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394679/ https://www.ncbi.nlm.nih.gov/pubmed/30719536 http://dx.doi.org/10.1007/s00432-018-2787-1 |
Ejemplares similares
-
Computer-aided diagnosis of isocitrate dehydrogenase genotypes in glioblastomas from radiomic patterns
por: Lo, Chung-Ming, et al.
Publicado: (2020) -
A Non-invasive Radiomic Method Using (18)F-FDG PET Predicts Isocitrate Dehydrogenase Genotype and Prognosis in Patients With Glioma
por: Li, Longfei, et al.
Publicado: (2019) -
Assessment of Isocitrate Dehydrogenase 1 Genotype and Cell Proliferation in Gliomas Using Multiple Diffusion Magnetic Resonance Imaging
por: Xie, Yan, et al.
Publicado: (2021) -
Vorasidenib: A promising therapeutic breakthrough for diffuse isocitrate dehydrogenase mutant gliomas
por: Wahid, Abdul, et al.
Publicado: (2023) -
Radiomic model for predicting mutations in the isocitrate dehydrogenase gene in glioblastomas
por: Hsieh, Kevin Li-Chun, et al.
Publicado: (2017)