Cargando…
Rigorous packing of unit squares into a circle
This paper considers the task of finding the smallest circle into which one can pack a fixed number of non-overlapping unit squares that are free to rotate. Due to the rotation angles, the packing of unit squares into a container is considerably harder to solve than their circle packing counterparts...
Autores principales: | Montanher, Tiago, Neumaier, Arnold, Csaba Markót, Mihály, Domes, Ferenc, Schichl, Hermann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394747/ https://www.ncbi.nlm.nih.gov/pubmed/30880874 http://dx.doi.org/10.1007/s10898-018-0711-5 |
Ejemplares similares
-
Improved interval methods for solving circle packing problems in the unit square
por: Markót, Mihály Csaba
Publicado: (2021) -
Using interval unions to solve linear systems of equations with uncertainties
por: Montanher, Tiago, et al.
Publicado: (2017) -
New Approaches to Circle Packing in a Square: With Program Codes
por: Szabó, P G, et al.
Publicado: (2007) -
A computational study of global optimization solvers on two trust region subproblems
por: Montanher, Tiago, et al.
Publicado: (2018) -
A manifold-based approach to sparse global constraint satisfaction problems
por: Baharev, Ali, et al.
Publicado: (2019)