Cargando…
A topological model for predicting adsorption energies of polycyclic aromatic hydrocarbons on late-transition metal surfaces
We introduce and validate by first-principles calculations an analogy between metal coordination chemistry and the adsorption of polycyclic aromatic hydrocarbons (PAHs) at metal surfaces for the derivation of a model for predicting the PAH adsorption energies. We correlate the binding of PAH on the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394885/ https://www.ncbi.nlm.nih.gov/pubmed/30931152 http://dx.doi.org/10.1039/c8re00229k |
_version_ | 1783398977601798144 |
---|---|
author | Ding, Zhao-Bin Tommasini, Matteo Maestri, Matteo |
author_facet | Ding, Zhao-Bin Tommasini, Matteo Maestri, Matteo |
author_sort | Ding, Zhao-Bin |
collection | PubMed |
description | We introduce and validate by first-principles calculations an analogy between metal coordination chemistry and the adsorption of polycyclic aromatic hydrocarbons (PAHs) at metal surfaces for the derivation of a model for predicting the PAH adsorption energies. We correlate the binding of PAH on the metal surface with the coordination between metal atom and the ligands in the metal complex, where the formation enthalpy of metal complexes is mainly determined by the strength of a single metal–ligand (M–L) bond and by the number of the M–L bonds. This analogy allows estimation of the adsorption energies only on the basis of the structure of the PAHs and of their adsorption configurations. The adsorption energies of PAHs are found to depend on simple geometric parameters, such as the number of metal–carbon bonds. Moreover, when the lattice of the metal surface is commensurate with the size of benzene rings, the contribution to the adsorption energy from η(2)-coordination is about twice that from η(1)-coordination. These results show that the principles of coordination chemistry can facilitate the modeling of processes at metal surfaces, and pave the way to systematically model reactions involving complex adsorbates at surfaces. |
format | Online Article Text |
id | pubmed-6394885 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-63948852019-03-29 A topological model for predicting adsorption energies of polycyclic aromatic hydrocarbons on late-transition metal surfaces Ding, Zhao-Bin Tommasini, Matteo Maestri, Matteo React Chem Eng Chemistry We introduce and validate by first-principles calculations an analogy between metal coordination chemistry and the adsorption of polycyclic aromatic hydrocarbons (PAHs) at metal surfaces for the derivation of a model for predicting the PAH adsorption energies. We correlate the binding of PAH on the metal surface with the coordination between metal atom and the ligands in the metal complex, where the formation enthalpy of metal complexes is mainly determined by the strength of a single metal–ligand (M–L) bond and by the number of the M–L bonds. This analogy allows estimation of the adsorption energies only on the basis of the structure of the PAHs and of their adsorption configurations. The adsorption energies of PAHs are found to depend on simple geometric parameters, such as the number of metal–carbon bonds. Moreover, when the lattice of the metal surface is commensurate with the size of benzene rings, the contribution to the adsorption energy from η(2)-coordination is about twice that from η(1)-coordination. These results show that the principles of coordination chemistry can facilitate the modeling of processes at metal surfaces, and pave the way to systematically model reactions involving complex adsorbates at surfaces. Royal Society of Chemistry 2019-02-01 2018-12-20 /pmc/articles/PMC6394885/ /pubmed/30931152 http://dx.doi.org/10.1039/c8re00229k Text en This journal is © The Royal Society of Chemistry 2019 https://creativecommons.org/licenses/by-nc/3.0/This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry Ding, Zhao-Bin Tommasini, Matteo Maestri, Matteo A topological model for predicting adsorption energies of polycyclic aromatic hydrocarbons on late-transition metal surfaces |
title | A topological model for predicting adsorption energies of polycyclic aromatic hydrocarbons on late-transition metal surfaces
|
title_full | A topological model for predicting adsorption energies of polycyclic aromatic hydrocarbons on late-transition metal surfaces
|
title_fullStr | A topological model for predicting adsorption energies of polycyclic aromatic hydrocarbons on late-transition metal surfaces
|
title_full_unstemmed | A topological model for predicting adsorption energies of polycyclic aromatic hydrocarbons on late-transition metal surfaces
|
title_short | A topological model for predicting adsorption energies of polycyclic aromatic hydrocarbons on late-transition metal surfaces
|
title_sort | topological model for predicting adsorption energies of polycyclic aromatic hydrocarbons on late-transition metal surfaces |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394885/ https://www.ncbi.nlm.nih.gov/pubmed/30931152 http://dx.doi.org/10.1039/c8re00229k |
work_keys_str_mv | AT dingzhaobin atopologicalmodelforpredictingadsorptionenergiesofpolycyclicaromatichydrocarbonsonlatetransitionmetalsurfaces AT tommasinimatteo atopologicalmodelforpredictingadsorptionenergiesofpolycyclicaromatichydrocarbonsonlatetransitionmetalsurfaces AT maestrimatteo atopologicalmodelforpredictingadsorptionenergiesofpolycyclicaromatichydrocarbonsonlatetransitionmetalsurfaces AT dingzhaobin topologicalmodelforpredictingadsorptionenergiesofpolycyclicaromatichydrocarbonsonlatetransitionmetalsurfaces AT tommasinimatteo topologicalmodelforpredictingadsorptionenergiesofpolycyclicaromatichydrocarbonsonlatetransitionmetalsurfaces AT maestrimatteo topologicalmodelforpredictingadsorptionenergiesofpolycyclicaromatichydrocarbonsonlatetransitionmetalsurfaces |