Cargando…

Unbiased subgenome evolution following a recent whole-genome duplication in pear (Pyrus bretschneideri Rehd.)

Genome fractionation (also known as diploidization) frequently occurs following paleopolyploidization events. Biased fractionation between subgenomes has been found in some paleo-allopolyploids, while this phenomenon is absent in paleo-autopolyploids. Pear (Pyrus bretschneideri Rehd.) experienced a...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qionghou, Qiao, Xin, Yin, Hao, Zhou, Yuhang, Dong, Huizhen, Qi, Kaijie, Li, Leiting, Zhang, Shaoling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395616/
https://www.ncbi.nlm.nih.gov/pubmed/30854211
http://dx.doi.org/10.1038/s41438-018-0110-6
Descripción
Sumario:Genome fractionation (also known as diploidization) frequently occurs following paleopolyploidization events. Biased fractionation between subgenomes has been found in some paleo-allopolyploids, while this phenomenon is absent in paleo-autopolyploids. Pear (Pyrus bretschneideri Rehd.) experienced a recent whole-genome duplication (WGD, ~30 million years ago); however, the evolutionary fate of the two subgenomes derived from this WGD event is not clear. In this study, we identified the two paleo-subgenomes in pear using peach (Prunus persica) as an outgroup and investigated differences in the gene loss rate, evolutionary rate, gene expression level, and DNA methylation level between these two subgenomes. Fractionation bias was not found between the two pear subgenomes, which evolved at similar evolutionary rates. The DNA methylation level of the two subgenomes showed little bias, and we found no expression dominance between the subgenomes. However, we found that singleton genes and homeologous genes within each subgenome showed divergent evolutionary patterns of selective constraints, expression and epigenetic modification. These results provide insights into subgenome evolution following paleopolyploidization in pear.