Cargando…
Tight clustering for large datasets with an application to gene expression data
This article proposes a practical and scalable version of the tight clustering algorithm. The tight clustering algorithm provides tight and stable relevant clusters as output while leaving a set of points as noise or scattered points, that would not go into any cluster. However, the computational li...
Autores principales: | Karmakar, Bikram, Das, Sarmistha, Bhattacharya, Sohom, Sarkar, Rohan, Mukhopadhyay, Indranil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395712/ https://www.ncbi.nlm.nih.gov/pubmed/30816195 http://dx.doi.org/10.1038/s41598-019-39459-w |
Ejemplares similares
-
TiMEG: an integrative statistical method for partially missing multi-omics data
por: Das, Sarmistha, et al.
Publicado: (2021) -
Family-based genome-wide association of inflammation biomarkers and fenofibrate treatment response in the GOLDN study
por: Das, Sarmistha, et al.
Publicado: (2018) -
clusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-cell and other large gene expression datasets
por: Risso, Davide, et al.
Publicado: (2018) -
Determination of critical community size from an HIV/AIDS model
por: Das, Sarmistha, et al.
Publicado: (2021) -
Partial mixture model for tight clustering of gene expression time-course
por: Yuan, Yinyin, et al.
Publicado: (2008)