Cargando…

Formation of the first generation of stars and blackholes in the Universe

Modern sky surveys using large ground-based telescopes have discovered a variety of celestial objects. Prominent structures such as galaxies and galaxy clusters are found virtually everywhere, and their collective distribution forms the large-scale structure of the Universe. It is thought that all o...

Descripción completa

Detalles Bibliográficos
Autor principal: YOSHIDA, Naoki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Japan Academy 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395782/
https://www.ncbi.nlm.nih.gov/pubmed/30643093
http://dx.doi.org/10.2183/pjab.95.002
Descripción
Sumario:Modern sky surveys using large ground-based telescopes have discovered a variety of celestial objects. Prominent structures such as galaxies and galaxy clusters are found virtually everywhere, and their collective distribution forms the large-scale structure of the Universe. It is thought that all of the rich content in the present-day Universe developed through gravitational amplification of primeval density fluctuations generated in the very early phase of cosmic evolution. The standard theoretical model based on an array of recent observations accurately predicts the physical conditions in the early Universe, and powerful super-computers allow us to simulate in detail the formation and evolution of cosmic structure to the present epoch. We review recent progress in the study on the first generation of stars and blackholes. We focus on the physics of early structure formation, while identifying several key issues and open questions. Finally, we discuss prospects for future observations of the first stars, galaxies and blackholes.