Cargando…
Ordinal regression models for zero-inflated and/or over-dispersed count data
Count data commonly arise in natural sciences but adequately modeling these data is challenging due to zero-inflation and over-dispersion. While multiple parametric modeling approaches have been proposed, unfortunately there is no consensus regarding how to choose the best model. In this article, we...
Autores principales: | Valle, Denis, Ben Toh, Kok, Laporta, Gabriel Zorello, Zhao, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395857/ https://www.ncbi.nlm.nih.gov/pubmed/30816185 http://dx.doi.org/10.1038/s41598-019-39377-x |
Ejemplares similares
-
A comparison of zero-inflated and hurdle models for modeling zero-inflated count data
por: Feng, Cindy Xin
Publicado: (2021) -
An empirical comparison of methods for analyzing over-dispersed zero-inflated count data from stratified cluster randomized trials
por: Borhan, Sayem, et al.
Publicado: (2020) -
On the equivalence of one‐inflated zero‐truncated and zero‐truncated one‐inflated count data likelihoods
por: Böhning, Dankmar
Publicado: (2022) -
Zero‐inflated count distributions for capture–mark–reencounter data
por: Riecke, Thomas V., et al.
Publicado: (2022) -
Infants’ gut microbiome data: A Bayesian Marginal Zero-inflated Negative Binomial regression model for multivariate analyses of count data
por: Hajihosseini, Morteza, et al.
Publicado: (2023)