Cargando…

Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network

Traditional Chinese Medicine (TCM) has received increasing attention as a complementary approach or alternative to modern medicine. However, experimental methods for identifying novel targets of TCM herbs heavily relied on the current available herb-compound-target relationships. In this work, we pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ning, Li, Peng, Hu, Xiaochen, Yang, Kuo, Peng, Yonghong, Zhu, Qiang, Zhang, Runshun, Gao, Zhuye, Xu, Hao, Liu, Baoyan, Chen, Jianxin, Zhou, Xuezhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396098/
https://www.ncbi.nlm.nih.gov/pubmed/30867892
http://dx.doi.org/10.1016/j.csbj.2019.02.002
Descripción
Sumario:Traditional Chinese Medicine (TCM) has received increasing attention as a complementary approach or alternative to modern medicine. However, experimental methods for identifying novel targets of TCM herbs heavily relied on the current available herb-compound-target relationships. In this work, we present an Herb-Target Interaction Network (HTINet) approach, a novel network integration pipeline for herb-target prediction mainly relying on the symptom related associations. HTINet focuses on capturing the low-dimensional feature vectors for both herbs and proteins by network embedding, which incorporate the topological properties of nodes across multi-layered heterogeneous network, and then performs supervised learning based on these low-dimensional feature representations. HTINet obtains performance improvement over a well-established random walk based herb-target prediction method. Furthermore, we have manually validated several predicted herb-target interactions from independent literatures. These results indicate that HTINet can be used to integrate heterogeneous information to predict novel herb-target interactions.