Cargando…
Establishment of multiple diagnosis models for colorectal cancer with artificial neural networks
The current study aimed to develop multiple diagnosis models for colorectal cancer (CRC) based on data from The Cancer Genome Atlas database and analysis with artificial neural networks in order to enhance CRC diagnosis methods. A genetic algorithm and mean impact value were used to select genes to...
Autores principales: | Wang, Qiang, Wei, Jianchang, Chen, Zhuanpeng, Zhang, Tong, Zhong, Junbin, Zhong, Bingzheng, Yang, Ping, Li, Wanglin, Cao, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396131/ https://www.ncbi.nlm.nih.gov/pubmed/30867765 http://dx.doi.org/10.3892/ol.2019.10010 |
Ejemplares similares
-
Expression of EZH2 is associated with poor outcome in colorectal cancer
por: Chen, Zhuanpeng, et al.
Publicado: (2018) -
Genome-scale CRISPR-Cas9 knockout screening in gastrointestinal stromal tumor with Imatinib resistance
por: Cao, Jie, et al.
Publicado: (2018) -
Overexpression of transcription factor activating enhancer binding protein 4 (TFAP4) predicts poor prognosis for colorectal cancer patients
por: Wei, Jianchang, et al.
Publicado: (2017) -
A survival comparison of gastric mucin-producing adenocarcinoma to conventional adenocarcinoma: a SEER database analysis
por: Wang, Qiang, et al.
Publicado: (2021) -
Survival outcome of local vs. radical excision in rectal gastrointestinal stromal tumor: a SEER database analysis
por: Wei, Jianchang, et al.
Publicado: (2022)