Cargando…

Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence

Ageing is the biggest risk factor for cardiovascular disease. Cellular senescence, a process driven in part by telomere shortening, has been implicated in age‐related tissue dysfunction. Here, we address the question of how senescence is induced in rarely dividing/post‐mitotic cardiomyocytes and inv...

Descripción completa

Detalles Bibliográficos
Autores principales: Anderson, Rhys, Lagnado, Anthony, Maggiorani, Damien, Walaszczyk, Anna, Dookun, Emily, Chapman, James, Birch, Jodie, Salmonowicz, Hanna, Ogrodnik, Mikolaj, Jurk, Diana, Proctor, Carole, Correia‐Melo, Clara, Victorelli, Stella, Fielder, Edward, Berlinguer‐Palmini, Rolando, Owens, Andrew, Greaves, Laura C, Kolsky, Kathy L, Parini, Angelo, Douin‐Echinard, Victorine, LeBrasseur, Nathan K, Arthur, Helen M, Tual‐Chalot, Simon, Schafer, Marissa J, Roos, Carolyn M, Miller, Jordan D, Robertson, Neil, Mann, Jelena, Adams, Peter D, Tchkonia, Tamara, Kirkland, James L, Mialet‐Perez, Jeanne, Richardson, Gavin D, Passos, João F
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396144/
https://www.ncbi.nlm.nih.gov/pubmed/30737259
http://dx.doi.org/10.15252/embj.2018100492
_version_ 1783399212567756800
author Anderson, Rhys
Lagnado, Anthony
Maggiorani, Damien
Walaszczyk, Anna
Dookun, Emily
Chapman, James
Birch, Jodie
Salmonowicz, Hanna
Ogrodnik, Mikolaj
Jurk, Diana
Proctor, Carole
Correia‐Melo, Clara
Victorelli, Stella
Fielder, Edward
Berlinguer‐Palmini, Rolando
Owens, Andrew
Greaves, Laura C
Kolsky, Kathy L
Parini, Angelo
Douin‐Echinard, Victorine
LeBrasseur, Nathan K
Arthur, Helen M
Tual‐Chalot, Simon
Schafer, Marissa J
Roos, Carolyn M
Miller, Jordan D
Robertson, Neil
Mann, Jelena
Adams, Peter D
Tchkonia, Tamara
Kirkland, James L
Mialet‐Perez, Jeanne
Richardson, Gavin D
Passos, João F
author_facet Anderson, Rhys
Lagnado, Anthony
Maggiorani, Damien
Walaszczyk, Anna
Dookun, Emily
Chapman, James
Birch, Jodie
Salmonowicz, Hanna
Ogrodnik, Mikolaj
Jurk, Diana
Proctor, Carole
Correia‐Melo, Clara
Victorelli, Stella
Fielder, Edward
Berlinguer‐Palmini, Rolando
Owens, Andrew
Greaves, Laura C
Kolsky, Kathy L
Parini, Angelo
Douin‐Echinard, Victorine
LeBrasseur, Nathan K
Arthur, Helen M
Tual‐Chalot, Simon
Schafer, Marissa J
Roos, Carolyn M
Miller, Jordan D
Robertson, Neil
Mann, Jelena
Adams, Peter D
Tchkonia, Tamara
Kirkland, James L
Mialet‐Perez, Jeanne
Richardson, Gavin D
Passos, João F
author_sort Anderson, Rhys
collection PubMed
description Ageing is the biggest risk factor for cardiovascular disease. Cellular senescence, a process driven in part by telomere shortening, has been implicated in age‐related tissue dysfunction. Here, we address the question of how senescence is induced in rarely dividing/post‐mitotic cardiomyocytes and investigate whether clearance of senescent cells attenuates age‐related cardiac dysfunction. During ageing, human and murine cardiomyocytes acquire a senescent‐like phenotype characterised by persistent DNA damage at telomere regions that can be driven by mitochondrial dysfunction and crucially can occur independently of cell division and telomere length. Length‐independent telomere damage in cardiomyocytes activates the classical senescence‐inducing pathways, p21(CIP) and p16(INK4a), and results in a non‐canonical senescence‐associated secretory phenotype, which is pro‐fibrotic and pro‐hypertrophic. Pharmacological or genetic clearance of senescent cells in mice alleviates detrimental features of cardiac ageing, including myocardial hypertrophy and fibrosis. Our data describe a mechanism by which senescence can occur and contribute to age‐related myocardial dysfunction and in the wider setting to ageing in post‐mitotic tissues.
format Online
Article
Text
id pubmed-6396144
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-63961442019-03-11 Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence Anderson, Rhys Lagnado, Anthony Maggiorani, Damien Walaszczyk, Anna Dookun, Emily Chapman, James Birch, Jodie Salmonowicz, Hanna Ogrodnik, Mikolaj Jurk, Diana Proctor, Carole Correia‐Melo, Clara Victorelli, Stella Fielder, Edward Berlinguer‐Palmini, Rolando Owens, Andrew Greaves, Laura C Kolsky, Kathy L Parini, Angelo Douin‐Echinard, Victorine LeBrasseur, Nathan K Arthur, Helen M Tual‐Chalot, Simon Schafer, Marissa J Roos, Carolyn M Miller, Jordan D Robertson, Neil Mann, Jelena Adams, Peter D Tchkonia, Tamara Kirkland, James L Mialet‐Perez, Jeanne Richardson, Gavin D Passos, João F EMBO J Articles Ageing is the biggest risk factor for cardiovascular disease. Cellular senescence, a process driven in part by telomere shortening, has been implicated in age‐related tissue dysfunction. Here, we address the question of how senescence is induced in rarely dividing/post‐mitotic cardiomyocytes and investigate whether clearance of senescent cells attenuates age‐related cardiac dysfunction. During ageing, human and murine cardiomyocytes acquire a senescent‐like phenotype characterised by persistent DNA damage at telomere regions that can be driven by mitochondrial dysfunction and crucially can occur independently of cell division and telomere length. Length‐independent telomere damage in cardiomyocytes activates the classical senescence‐inducing pathways, p21(CIP) and p16(INK4a), and results in a non‐canonical senescence‐associated secretory phenotype, which is pro‐fibrotic and pro‐hypertrophic. Pharmacological or genetic clearance of senescent cells in mice alleviates detrimental features of cardiac ageing, including myocardial hypertrophy and fibrosis. Our data describe a mechanism by which senescence can occur and contribute to age‐related myocardial dysfunction and in the wider setting to ageing in post‐mitotic tissues. John Wiley and Sons Inc. 2019-02-08 2019-03-01 /pmc/articles/PMC6396144/ /pubmed/30737259 http://dx.doi.org/10.15252/embj.2018100492 Text en © 2019 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Anderson, Rhys
Lagnado, Anthony
Maggiorani, Damien
Walaszczyk, Anna
Dookun, Emily
Chapman, James
Birch, Jodie
Salmonowicz, Hanna
Ogrodnik, Mikolaj
Jurk, Diana
Proctor, Carole
Correia‐Melo, Clara
Victorelli, Stella
Fielder, Edward
Berlinguer‐Palmini, Rolando
Owens, Andrew
Greaves, Laura C
Kolsky, Kathy L
Parini, Angelo
Douin‐Echinard, Victorine
LeBrasseur, Nathan K
Arthur, Helen M
Tual‐Chalot, Simon
Schafer, Marissa J
Roos, Carolyn M
Miller, Jordan D
Robertson, Neil
Mann, Jelena
Adams, Peter D
Tchkonia, Tamara
Kirkland, James L
Mialet‐Perez, Jeanne
Richardson, Gavin D
Passos, João F
Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence
title Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence
title_full Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence
title_fullStr Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence
title_full_unstemmed Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence
title_short Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence
title_sort length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396144/
https://www.ncbi.nlm.nih.gov/pubmed/30737259
http://dx.doi.org/10.15252/embj.2018100492
work_keys_str_mv AT andersonrhys lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT lagnadoanthony lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT maggioranidamien lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT walaszczykanna lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT dookunemily lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT chapmanjames lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT birchjodie lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT salmonowiczhanna lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT ogrodnikmikolaj lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT jurkdiana lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT proctorcarole lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT correiameloclara lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT victorellistella lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT fielderedward lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT berlinguerpalminirolando lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT owensandrew lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT greaveslaurac lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT kolskykathyl lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT pariniangelo lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT douinechinardvictorine lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT lebrasseurnathank lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT arthurhelenm lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT tualchalotsimon lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT schafermarissaj lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT rooscarolynm lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT millerjordand lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT robertsonneil lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT mannjelena lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT adamspeterd lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT tchkoniatamara lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT kirklandjamesl lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT mialetperezjeanne lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT richardsongavind lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence
AT passosjoaof lengthindependenttelomeredamagedrivespostmitoticcardiomyocytesenescence