Cargando…

Leveraging chromatin accessibility for transcriptional regulatory network inference in T Helper 17 Cells

Transcriptional regulatory networks (TRNs) provide insight into cellular behavior by describing interactions between transcription factors (TFs) and their gene targets. The assay for transposase-accessible chromatin (ATAC)–seq, coupled with TF motif analysis, provides indirect evidence of chromatin...

Descripción completa

Detalles Bibliográficos
Autores principales: Miraldi, Emily R., Pokrovskii, Maria, Watters, Aaron, Castro, Dayanne M., De Veaux, Nicholas, Hall, Jason A., Lee, June-Yong, Ciofani, Maria, Madar, Aviv, Carriero, Nick, Littman, Dan R., Bonneau, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396413/
https://www.ncbi.nlm.nih.gov/pubmed/30696696
http://dx.doi.org/10.1101/gr.238253.118
Descripción
Sumario:Transcriptional regulatory networks (TRNs) provide insight into cellular behavior by describing interactions between transcription factors (TFs) and their gene targets. The assay for transposase-accessible chromatin (ATAC)–seq, coupled with TF motif analysis, provides indirect evidence of chromatin binding for hundreds of TFs genome-wide. Here, we propose methods for TRN inference in a mammalian setting, using ATAC-seq data to improve gene expression modeling. We test our methods in the context of T Helper Cell Type 17 (Th17) differentiation, generating new ATAC-seq data to complement existing Th17 genomic resources. In this resource-rich mammalian setting, our extensive benchmarking provides quantitative, genome-scale evaluation of TRN inference, combining ATAC-seq and RNA-seq data. We refine and extend our previous Th17 TRN, using our new TRN inference methods to integrate all Th17 data (gene expression, ATAC-seq, TF knockouts, and ChIP-seq). We highlight newly discovered roles for individual TFs and groups of TFs (“TF–TF modules”) in Th17 gene regulation. Given the popularity of ATAC-seq, which provides high-resolution with low sample input requirements, we anticipate that our methods will improve TRN inference in new mammalian systems, especially in vivo, for cells directly from humans and animal models.