Cargando…
Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: a multi-site study
BACKGROUND: For most computer-aided diagnosis (CAD) problems involving prostate cancer detection via medical imaging data, the choice of classifier has been largely ad hoc, or been motivated by classifier comparison studies that have involved large synthetic datasets. More significantly, it is curre...
Autores principales: | Viswanath, Satish E., Chirra, Prathyush V., Yim, Michael C., Rofsky, Neil M., Purysko, Andrei S., Rosen, Mark A., Bloch, B Nicolas, Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396464/ https://www.ncbi.nlm.nih.gov/pubmed/30819131 http://dx.doi.org/10.1186/s12880-019-0308-6 |
Ejemplares similares
-
Predicting Classifier Performance with Limited Training Data: Applications to Computer-Aided Diagnosis in Breast and Prostate Cancer
por: Basavanhally, Ajay, et al.
Publicado: (2015) -
Region-specific deep learning models for accurate segmentation of rectal structures on post-chemoradiation T2w MRI: a multi-institutional, multi-reader study
por: DeSilvio, Thomas, et al.
Publicado: (2023) -
Quantum ensembles of quantum classifiers
por: Schuld, Maria, et al.
Publicado: (2018) -
Radiomics Analysis on FLT-PET/MRI for Characterization of Early Treatment Response in Renal Cell Carcinoma: A Proof-of-Concept Study()
por: Antunes, Jacob, et al.
Publicado: (2016) -
Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI
por: Shiradkar, Rakesh, et al.
Publicado: (2016)