Cargando…
MMSplice: modular modeling improves the predictions of genetic variant effects on splicing
Predicting the effects of genetic variants on splicing is highly relevant for human genetics. We describe the framework MMSplice (modular modeling of splicing) with which we built the winning model of the CAGI5 exon skipping prediction challenge. The MMSplice modules are neural networks scoring exon...
Autores principales: | Cheng, Jun, Nguyen, Thi Yen Duong, Cygan, Kamil J., Çelik, Muhammed Hasan, Fairbrother, William G., Avsec, žiga, Gagneur, Julien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396468/ https://www.ncbi.nlm.nih.gov/pubmed/30823901 http://dx.doi.org/10.1186/s13059-019-1653-z |
Ejemplares similares
-
MTSplice predicts effects of genetic variants on tissue-specific splicing
por: Cheng, Jun, et al.
Publicado: (2021) -
Publisher Correction: MTSplice predicts effects of genetic variants on tissue-specific splicing
por: Cheng, Jun, et al.
Publicado: (2021) -
Modular decomposition of protein-protein interaction networks
por: Gagneur, Julien, et al.
Publicado: (2004) -
Predicting mean ribosome load for 5’UTR of any length using deep learning
por: Karollus, Alexander, et al.
Publicado: (2021) -
Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks
por: Avsec, Žiga, et al.
Publicado: (2018)