Cargando…
Dynamic spatiotemporal modeling of the infected rate of visceral leishmaniasis in human in an endemic area of Amhara regional state, Ethiopia
Visceral Leishmaniasis is a very dangerous form of leishmaniasis and, shorn of appropriate diagnosis and handling, it leads to death and physical disability. Depicting the spatiotemporal pattern of disease is important for disease regulator and deterrence strategies. Spatiotemporal modeling has dist...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396920/ https://www.ncbi.nlm.nih.gov/pubmed/30822344 http://dx.doi.org/10.1371/journal.pone.0212934 |
_version_ | 1783399342158118912 |
---|---|
author | Godana, Anteneh Asmare Mwalili, Samuel Musili Orwa, George Otieno |
author_facet | Godana, Anteneh Asmare Mwalili, Samuel Musili Orwa, George Otieno |
author_sort | Godana, Anteneh Asmare |
collection | PubMed |
description | Visceral Leishmaniasis is a very dangerous form of leishmaniasis and, shorn of appropriate diagnosis and handling, it leads to death and physical disability. Depicting the spatiotemporal pattern of disease is important for disease regulator and deterrence strategies. Spatiotemporal modeling has distended broad veneration in recent years. Spatial and spatiotemporal disease modeling is extensively used for the analysis of registry data and usually articulated in a hierarchical Bayesian framework. In this study, we have developed the hierarchical spatiotemporal Bayesian modeling of the infected rate of Visceral leishmaniasis in Human (VLH). We applied the Stochastics Partial Differential Equation (SPDE) approach for a spatiotemporal hierarchical model for Visceral leishmaniasis in human (VLH) that involves a GF and a state process is associated with an autoregressive order one temporal dynamics and the spatially correlated error term, along with the effect of land shield, metrological, demographic, socio-demographic and geographical covariates in an endemic area of Amhara regional state, Ethiopia. The model encompasses a Gaussian Field (GF), affected by an error term, and a state process described by a first-order autoregressive dynamic model and spatially correlated innovations. A hierarchical model including spatially and temporally correlated errors was fit to the infected rate of Visceral leishmaniasis in human (VLH) weekly data from January 2015 to December 2017 using the R package R-INLA, which allows for Bayesian modeling using the stochastic partial differential equation (SPDE) approach. We found that the mean weekly temperature had a significant positive association with infected rate of VLH. Moreover, net migration rate, clean water coverage, average number of households, population density per square kilometer, average number of persons per household unit, education coverage, health facility coverage, mortality rate, and sex ratio had a significant association with the infected rate of visceral leishmaniasis (VLH) in the region. In this study, we investigated the dynamic spatiotemporal modeling of Visceral leishmaniasis in Human (VLH) through a stochastic partial differential equation approach (SPDE) using integrated nested Laplace approximation (INLA). Our study had confirmed both metrological, demographic, sociodemographic and geographic covariates had a significant association with the infected rate of visceral leishmaniasis (VLH) in the region. |
format | Online Article Text |
id | pubmed-6396920 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63969202019-03-08 Dynamic spatiotemporal modeling of the infected rate of visceral leishmaniasis in human in an endemic area of Amhara regional state, Ethiopia Godana, Anteneh Asmare Mwalili, Samuel Musili Orwa, George Otieno PLoS One Research Article Visceral Leishmaniasis is a very dangerous form of leishmaniasis and, shorn of appropriate diagnosis and handling, it leads to death and physical disability. Depicting the spatiotemporal pattern of disease is important for disease regulator and deterrence strategies. Spatiotemporal modeling has distended broad veneration in recent years. Spatial and spatiotemporal disease modeling is extensively used for the analysis of registry data and usually articulated in a hierarchical Bayesian framework. In this study, we have developed the hierarchical spatiotemporal Bayesian modeling of the infected rate of Visceral leishmaniasis in Human (VLH). We applied the Stochastics Partial Differential Equation (SPDE) approach for a spatiotemporal hierarchical model for Visceral leishmaniasis in human (VLH) that involves a GF and a state process is associated with an autoregressive order one temporal dynamics and the spatially correlated error term, along with the effect of land shield, metrological, demographic, socio-demographic and geographical covariates in an endemic area of Amhara regional state, Ethiopia. The model encompasses a Gaussian Field (GF), affected by an error term, and a state process described by a first-order autoregressive dynamic model and spatially correlated innovations. A hierarchical model including spatially and temporally correlated errors was fit to the infected rate of Visceral leishmaniasis in human (VLH) weekly data from January 2015 to December 2017 using the R package R-INLA, which allows for Bayesian modeling using the stochastic partial differential equation (SPDE) approach. We found that the mean weekly temperature had a significant positive association with infected rate of VLH. Moreover, net migration rate, clean water coverage, average number of households, population density per square kilometer, average number of persons per household unit, education coverage, health facility coverage, mortality rate, and sex ratio had a significant association with the infected rate of visceral leishmaniasis (VLH) in the region. In this study, we investigated the dynamic spatiotemporal modeling of Visceral leishmaniasis in Human (VLH) through a stochastic partial differential equation approach (SPDE) using integrated nested Laplace approximation (INLA). Our study had confirmed both metrological, demographic, sociodemographic and geographic covariates had a significant association with the infected rate of visceral leishmaniasis (VLH) in the region. Public Library of Science 2019-03-01 /pmc/articles/PMC6396920/ /pubmed/30822344 http://dx.doi.org/10.1371/journal.pone.0212934 Text en © 2019 Godana et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Godana, Anteneh Asmare Mwalili, Samuel Musili Orwa, George Otieno Dynamic spatiotemporal modeling of the infected rate of visceral leishmaniasis in human in an endemic area of Amhara regional state, Ethiopia |
title | Dynamic spatiotemporal modeling of the infected rate of visceral leishmaniasis in human in an endemic area of Amhara regional state, Ethiopia |
title_full | Dynamic spatiotemporal modeling of the infected rate of visceral leishmaniasis in human in an endemic area of Amhara regional state, Ethiopia |
title_fullStr | Dynamic spatiotemporal modeling of the infected rate of visceral leishmaniasis in human in an endemic area of Amhara regional state, Ethiopia |
title_full_unstemmed | Dynamic spatiotemporal modeling of the infected rate of visceral leishmaniasis in human in an endemic area of Amhara regional state, Ethiopia |
title_short | Dynamic spatiotemporal modeling of the infected rate of visceral leishmaniasis in human in an endemic area of Amhara regional state, Ethiopia |
title_sort | dynamic spatiotemporal modeling of the infected rate of visceral leishmaniasis in human in an endemic area of amhara regional state, ethiopia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396920/ https://www.ncbi.nlm.nih.gov/pubmed/30822344 http://dx.doi.org/10.1371/journal.pone.0212934 |
work_keys_str_mv | AT godanaantenehasmare dynamicspatiotemporalmodelingoftheinfectedrateofvisceralleishmaniasisinhumaninanendemicareaofamhararegionalstateethiopia AT mwalilisamuelmusili dynamicspatiotemporalmodelingoftheinfectedrateofvisceralleishmaniasisinhumaninanendemicareaofamhararegionalstateethiopia AT orwageorgeotieno dynamicspatiotemporalmodelingoftheinfectedrateofvisceralleishmaniasisinhumaninanendemicareaofamhararegionalstateethiopia |