Cargando…
Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis
The fungal circadian clock photoreceptor Vivid (VVD) contains a photosensitive allosteric light, oxygen, voltage (LOV) domain that undergoes a large N-terminal conformational change. The mechanism by which a blue-light driven covalent bond formation leads to a global conformational change remains un...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396943/ https://www.ncbi.nlm.nih.gov/pubmed/30779735 http://dx.doi.org/10.1371/journal.pcbi.1006801 |
_version_ | 1783399347447136256 |
---|---|
author | Zhou, Hongyu Dong, Zheng Verkhivker, Gennady Zoltowski, Brian D. Tao, Peng |
author_facet | Zhou, Hongyu Dong, Zheng Verkhivker, Gennady Zoltowski, Brian D. Tao, Peng |
author_sort | Zhou, Hongyu |
collection | PubMed |
description | The fungal circadian clock photoreceptor Vivid (VVD) contains a photosensitive allosteric light, oxygen, voltage (LOV) domain that undergoes a large N-terminal conformational change. The mechanism by which a blue-light driven covalent bond formation leads to a global conformational change remains unclear, which hinders the further development of VVD as an optogenetic tool. We answered this question through a novel computational platform integrating Markov state models, machine learning methods, and newly developed community analysis algorithms. Applying this new integrative approach, we provided a quantitative evaluation of the contribution from the covalent bond to the protein global conformational change, and proposed an atomistic allosteric mechanism leading to the discovery of the unexpected importance of A’α/Aβ and previously overlooked Eα/Fα loops in the conformational change. This approach could be applicable to other allosteric proteins in general to provide interpretable atomistic representations of their otherwise elusive allosteric mechanisms. |
format | Online Article Text |
id | pubmed-6396943 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63969432019-03-09 Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis Zhou, Hongyu Dong, Zheng Verkhivker, Gennady Zoltowski, Brian D. Tao, Peng PLoS Comput Biol Research Article The fungal circadian clock photoreceptor Vivid (VVD) contains a photosensitive allosteric light, oxygen, voltage (LOV) domain that undergoes a large N-terminal conformational change. The mechanism by which a blue-light driven covalent bond formation leads to a global conformational change remains unclear, which hinders the further development of VVD as an optogenetic tool. We answered this question through a novel computational platform integrating Markov state models, machine learning methods, and newly developed community analysis algorithms. Applying this new integrative approach, we provided a quantitative evaluation of the contribution from the covalent bond to the protein global conformational change, and proposed an atomistic allosteric mechanism leading to the discovery of the unexpected importance of A’α/Aβ and previously overlooked Eα/Fα loops in the conformational change. This approach could be applicable to other allosteric proteins in general to provide interpretable atomistic representations of their otherwise elusive allosteric mechanisms. Public Library of Science 2019-02-19 /pmc/articles/PMC6396943/ /pubmed/30779735 http://dx.doi.org/10.1371/journal.pcbi.1006801 Text en © 2019 Zhou et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zhou, Hongyu Dong, Zheng Verkhivker, Gennady Zoltowski, Brian D. Tao, Peng Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis |
title | Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis |
title_full | Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis |
title_fullStr | Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis |
title_full_unstemmed | Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis |
title_short | Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis |
title_sort | allosteric mechanism of the circadian protein vivid resolved through markov state model and machine learning analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396943/ https://www.ncbi.nlm.nih.gov/pubmed/30779735 http://dx.doi.org/10.1371/journal.pcbi.1006801 |
work_keys_str_mv | AT zhouhongyu allostericmechanismofthecircadianproteinvividresolvedthroughmarkovstatemodelandmachinelearninganalysis AT dongzheng allostericmechanismofthecircadianproteinvividresolvedthroughmarkovstatemodelandmachinelearninganalysis AT verkhivkergennady allostericmechanismofthecircadianproteinvividresolvedthroughmarkovstatemodelandmachinelearninganalysis AT zoltowskibriand allostericmechanismofthecircadianproteinvividresolvedthroughmarkovstatemodelandmachinelearninganalysis AT taopeng allostericmechanismofthecircadianproteinvividresolvedthroughmarkovstatemodelandmachinelearninganalysis |