Cargando…

Lactate production without hypoxia in skeletal muscle during electrical cycling: Crossover study of femoral venous-arterial differences in healthy volunteers

BACKGROUND: Aim of the study was to compare metabolic response of leg skeletal muscle during functional electrical stimulation-driven unloaded cycling (FES) to that seen during volitional supine cycling. METHODS: Fourteen healthy volunteers were exposed in random order to supine cycling, either voli...

Descripción completa

Detalles Bibliográficos
Autores principales: Gojda, Jan, Waldauf, Petr, Hrušková, Natália, Blahutová, Barbora, Krajčová, Adéla, Urban, Tomáš, Tůma, Petr, Řasová, Kamila, Duška, František
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396965/
https://www.ncbi.nlm.nih.gov/pubmed/30822305
http://dx.doi.org/10.1371/journal.pone.0200228
Descripción
Sumario:BACKGROUND: Aim of the study was to compare metabolic response of leg skeletal muscle during functional electrical stimulation-driven unloaded cycling (FES) to that seen during volitional supine cycling. METHODS: Fourteen healthy volunteers were exposed in random order to supine cycling, either volitional (10-25-50 W, 10 min) or FES assisted (unloaded, 10 min) in a crossover design. Whole body and leg muscle metabolism were assessed by indirect calorimetry with concomitant repeated measurements of femoral venous-arterial differences of blood gases, glucose, lactate and amino acids. RESULTS: Unloaded FES cycling, but not volitional exercise, led to a significant increase in across-leg lactate production (from -1.1±2.1 to 5.5±7.4 mmol/min, p<0.001) and mild elevation of arterial lactate (from 1.8±0.7 to 2.5±0.8 mM). This occurred without widening of across-leg veno-arterial (VA) O(2) and CO(2) gaps. Femoral SvO(2) difference was directly proportional to VA difference of lactate (R(2) = 0.60, p = 0.002). Across-leg glucose uptake did not change with either type of exercise. Systemic oxygen consumption increased with FES cycling to similarly to 25W volitional exercise (138±29% resp. 124±23% of baseline). There was a net uptake of branched-chain amino acids and net release of Alanine from skeletal muscle, which were unaltered by either type of exercise. CONCLUSIONS: Unloaded FES cycling, but not volitional exercise causes significant lactate production without hypoxia in skeletal muscle. This phenomenon can be significant in vulnerable patients’ groups.