Cargando…
Robust optimization through neuroevolution
We propose a method for evolving neural network controllers robust with respect to variations of the environmental conditions (i.e. that can operate effectively in new conditions immediately, without the need to adapt to variations). The method specifies how the fitness of candidate solutions can be...
Autores principales: | Pagliuca, Paolo, Nolfi, Stefano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396973/ https://www.ncbi.nlm.nih.gov/pubmed/30822316 http://dx.doi.org/10.1371/journal.pone.0213193 |
Ejemplares similares
-
Maximizing adaptive power in neuroevolution
por: Pagliuca, Paolo, et al.
Publicado: (2018) -
Hands-On Neuroevolution with Python
por: Omelianenko, Iaroslav
Publicado: (2019) -
Correspondence between neuroevolution and gradient descent
por: Whitelam, Stephen, et al.
Publicado: (2021) -
Efficacy of Modern Neuro-Evolutionary Strategies for Continuous Control Optimization
por: Pagliuca, Paolo, et al.
Publicado: (2020) -
Towards the Neuroevolution of Low-level artificial general intelligence
por: Pontes-Filho, Sidney, et al.
Publicado: (2022)