Cargando…
Outstanding radiation resistance of tungsten-based high-entropy alloys
A body-centered cubic W-based refractory high entropy alloy with outstanding radiation resistance has been developed. The alloy was grown as thin films showing a bimodal grain size distribution in the nanocrystalline and ultrafine regimes and a unique 4-nm lamella-like structure revealed by atom pro...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397024/ https://www.ncbi.nlm.nih.gov/pubmed/30838329 http://dx.doi.org/10.1126/sciadv.aav2002 |
Sumario: | A body-centered cubic W-based refractory high entropy alloy with outstanding radiation resistance has been developed. The alloy was grown as thin films showing a bimodal grain size distribution in the nanocrystalline and ultrafine regimes and a unique 4-nm lamella-like structure revealed by atom probe tomography (APT). Transmission electron microscopy (TEM) and x-ray diffraction show certain black spots appearing after thermal annealing at elevated temperatures. TEM and APT analysis correlated the black spots with second-phase particles rich in Cr and V. No sign of irradiation-created dislocation loops, even after 8 dpa, was observed. Furthermore, nanomechanical testing shows a large hardness of 14 GPa in the as-deposited samples, with near negligible irradiation hardening. Theoretical modeling combining ab initio and Monte Carlo techniques predicts the formation of Cr- and V-rich second-phase particles and points at equal mobilities of point defects as the origin of the exceptional radiation tolerance. |
---|