Cargando…
A multi-task convolutional deep neural network for variant calling in single molecule sequencing
The accurate identification of DNA sequence variants is an important, but challenging task in genomics. It is particularly difficult for single molecule sequencing, which has a per-nucleotide error rate of ~5–15%. Meeting this demand, we developed Clairvoyante, a multi-task five-layer convolutional...
Autores principales: | Luo, Ruibang, Sedlazeck, Fritz J., Lam, Tak-Wah, Schatz, Michael C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397153/ https://www.ncbi.nlm.nih.gov/pubmed/30824707 http://dx.doi.org/10.1038/s41467-019-09025-z |
Ejemplares similares
-
Boosting variant-calling performance with multi-platform sequencing data using Clair3-MP
por: Yu, Huijing, et al.
Publicado: (2023) -
Clair3-trio: high-performance Nanopore long-read variant calling in family trios with trio-to-trio deep neural networks
por: Su, Junhao, et al.
Publicado: (2022) -
Duet: SNP-assisted structural variant calling and phasing using Oxford nanopore sequencing
por: Zhou, Yekai, et al.
Publicado: (2022) -
LRSim: A Linked-Reads Simulator Generating Insights for Better Genome Partitioning
por: Luo, Ruibang, et al.
Publicado: (2017) -
CONNET: Accurate Genome Consensus in Assembling Nanopore Sequencing Data via Deep Learning
por: Zhang, Yifan, et al.
Publicado: (2020)