Cargando…

Programming chain-growth copolymerization of DNA hairpin tiles for in-vitro hierarchical supramolecular organization

Formation of biological filaments via intracellular supramolecular polymerization of proteins or protein/nucleic acid complexes is under programmable and spatiotemporal control to maintain cellular and genomic integrity. Here we devise a bioinspired, catassembly-like isothermal chain-growth approach...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Honglu, Wang, Yu, Zhang, Huan, Liu, Xiaoguo, Lee, Antony, Huang, Qiuling, Wang, Fei, Chao, Jie, Liu, Huajie, Li, Jiang, Shi, Jiye, Zuo, Xiaolei, Wang, Lihua, Wang, Lianhui, Cao, Xiaoyu, Bustamante, Carlos, Tian, Zhongqun, Fan, Chunhai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397255/
https://www.ncbi.nlm.nih.gov/pubmed/30824698
http://dx.doi.org/10.1038/s41467-019-09004-4
Descripción
Sumario:Formation of biological filaments via intracellular supramolecular polymerization of proteins or protein/nucleic acid complexes is under programmable and spatiotemporal control to maintain cellular and genomic integrity. Here we devise a bioinspired, catassembly-like isothermal chain-growth approach to copolymerize DNA hairpin tiles (DHTs) into nanofilaments with desirable composition, chain length and function. By designing metastable DNA hairpins with shape-defining intramolecular hydrogen bonds, we generate two types of DHT monomers for copolymerization with high cooperativity and low dispersity indexes. Quantitative single-molecule dissection methods reveal that catalytic opening of a DHT motif harbouring a toehold triggers successive branch migration, which autonomously propagates to form copolymers with alternate tile units. We find that these shape-defined supramolecular nanostructures become substrates for efficient endocytosis by living mammalian cells in a stiffness-dependent manner. Hence, this catassembly-like in-vitro reconstruction approach provides clues for understanding structure-function relationship of biological filaments under physiological and pathological conditions.