Cargando…
In silico simulations of occurrence of transcription factor binding sites in bacterial genomes
BACKGROUND: Interactions between transcription factors and their specific binding sites are a key component of regulation of gene expression. Until recently, it was generally assumed that most bacterial transcription factor binding sites are located at or near promoters. However, several recent work...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397444/ https://www.ncbi.nlm.nih.gov/pubmed/30823869 http://dx.doi.org/10.1186/s12862-019-1381-8 |
_version_ | 1783399416449728512 |
---|---|
author | Mrázek, Jan Karls, Anna C. |
author_facet | Mrázek, Jan Karls, Anna C. |
author_sort | Mrázek, Jan |
collection | PubMed |
description | BACKGROUND: Interactions between transcription factors and their specific binding sites are a key component of regulation of gene expression. Until recently, it was generally assumed that most bacterial transcription factor binding sites are located at or near promoters. However, several recent works utilizing high-throughput technology to detect transcription factor binding sites in bacterial genomes found a large number of binding sites in unexpected locations, particularly inside genes, as opposed to known or expected promoter regions. While some of these intragenic binding sites likely have regulatory functions, an alternative scenario is that many of these binding sites arise by chance in the absence of selective constraints. The latter possibility was supported by in silico simulations for σ(54) binding sites in Salmonella. RESULTS: In this work, we extend these simulations to more than forty transcription factors from E. coli and other bacteria. The results suggest that binding sites for all analyzed transcription factors are likely to arise throughout the genome by random genetic drift and many transcription factor binding sites found in genomes may not have specific regulatory functions. In addition, when comparing observed and expected patterns of occurrence of binding sites in genomes, we observed distinct differences among different transcription factors. CONCLUSIONS: We speculate that transcription factor binding sites randomly occurring throughout the genome could be beneficial in promoting emergence of new regulatory interactions and thus facilitating evolution of gene regulatory networks. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12862-019-1381-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6397444 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-63974442019-03-13 In silico simulations of occurrence of transcription factor binding sites in bacterial genomes Mrázek, Jan Karls, Anna C. BMC Evol Biol Research Article BACKGROUND: Interactions between transcription factors and their specific binding sites are a key component of regulation of gene expression. Until recently, it was generally assumed that most bacterial transcription factor binding sites are located at or near promoters. However, several recent works utilizing high-throughput technology to detect transcription factor binding sites in bacterial genomes found a large number of binding sites in unexpected locations, particularly inside genes, as opposed to known or expected promoter regions. While some of these intragenic binding sites likely have regulatory functions, an alternative scenario is that many of these binding sites arise by chance in the absence of selective constraints. The latter possibility was supported by in silico simulations for σ(54) binding sites in Salmonella. RESULTS: In this work, we extend these simulations to more than forty transcription factors from E. coli and other bacteria. The results suggest that binding sites for all analyzed transcription factors are likely to arise throughout the genome by random genetic drift and many transcription factor binding sites found in genomes may not have specific regulatory functions. In addition, when comparing observed and expected patterns of occurrence of binding sites in genomes, we observed distinct differences among different transcription factors. CONCLUSIONS: We speculate that transcription factor binding sites randomly occurring throughout the genome could be beneficial in promoting emergence of new regulatory interactions and thus facilitating evolution of gene regulatory networks. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12862-019-1381-8) contains supplementary material, which is available to authorized users. BioMed Central 2019-03-01 /pmc/articles/PMC6397444/ /pubmed/30823869 http://dx.doi.org/10.1186/s12862-019-1381-8 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Mrázek, Jan Karls, Anna C. In silico simulations of occurrence of transcription factor binding sites in bacterial genomes |
title | In silico simulations of occurrence of transcription factor binding sites in bacterial genomes |
title_full | In silico simulations of occurrence of transcription factor binding sites in bacterial genomes |
title_fullStr | In silico simulations of occurrence of transcription factor binding sites in bacterial genomes |
title_full_unstemmed | In silico simulations of occurrence of transcription factor binding sites in bacterial genomes |
title_short | In silico simulations of occurrence of transcription factor binding sites in bacterial genomes |
title_sort | in silico simulations of occurrence of transcription factor binding sites in bacterial genomes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397444/ https://www.ncbi.nlm.nih.gov/pubmed/30823869 http://dx.doi.org/10.1186/s12862-019-1381-8 |
work_keys_str_mv | AT mrazekjan insilicosimulationsofoccurrenceoftranscriptionfactorbindingsitesinbacterialgenomes AT karlsannac insilicosimulationsofoccurrenceoftranscriptionfactorbindingsitesinbacterialgenomes |