Cargando…

Identification of genetic alterations associated with primary resistance to EGFR-TKIs in advanced non-small-cell lung cancer patients with EGFR sensitive mutations

BACKGROUND: Identification of activated epidermal growth factor receptor (EGFR) mutations and application of EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have greatly changed the therapeutic strategies of non-small-cell lung cancer (NSCLC). However, the long-term efficacy of EGFR-TKI therapy is limit...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Fang, Diao, Xia-Yao, Zhang, Xiao, Shao, Qiong, Feng, Yan-Fen, An, Xin, Wang, Hai-Yun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397445/
https://www.ncbi.nlm.nih.gov/pubmed/30823937
http://dx.doi.org/10.1186/s40880-019-0354-z
Descripción
Sumario:BACKGROUND: Identification of activated epidermal growth factor receptor (EGFR) mutations and application of EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have greatly changed the therapeutic strategies of non-small-cell lung cancer (NSCLC). However, the long-term efficacy of EGFR-TKI therapy is limited due to the development of drug resistance. The aim of this study was to investigate the correlation between the aberrant alterations of 8 driver genes and the primary resistance to EGFR-TKIs in advanced NSCLC patients with activated EGFR mutations. METHODS: We retrospectively reviewed the clinical data from 416 patients with stage III/IV or recurrent NSCLC who received an initial EGFR-TKI treatment, from April 2004 and March 2011, at the Sun Yat-sen University Cancer Center. Several genetic alterations associated with the efficacy of EGFR-TKIs, including the alterations in BIM, ALK, KRAS, PIK3CA, PTEN, MET, IGF1R, and ROS1, were detected by the routine clinical technologies. The progression-free survival (PFS) and overall survival (OS) were compared between different groups using Kaplan–Meier survival analysis with the log-rank test. A Cox regression model was used to estimate multivariable-adjusted hazard ratios (HRs) and their 95% confidence intervals (95% CIs) associated with the PFS and OS. RESULTS: Among the investigated patients, 169 NSCLC patients harbored EGFR-sensitive mutations. EGFR-mutant patients having PTEN deletion had a shorter PFS and OS than those with intact PTEN (P = 0.003 for PFS, and P = 0.034 for OS). In the combined molecular analysis of EGFR signaling pathway and resistance genes, we found that EGFR-mutant patients coexisted with aberrant alterations in EGFR signaling pathway and those having resistant genes had a statistically poorer PFS than those without such alterations (P < 0.001). A Cox proportional regression model determined that PTEN deletion (HR = 4.29,95% CI = 1.72–10.70) and low PTEN expression (HR = 1.96, 95% CI = 1.22–3.13), MET FISH + (HR = 2.83,95% CI = 1.37–5.86) were independent predictors for PFS in patients with EGFR-TKI treatment after adjustment for multiple factor. CONCLUSIONS: We determined that the coexistence of genetic alterations in cancer genes may explain primary resistance to EGFR-TKIs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40880-019-0354-z) contains supplementary material, which is available to authorized users.