Cargando…
Machine-learning approach to the design of OSDAs for zeolite beta
We report a machine-learning strategy for design of organic structure directing agents (OSDAs) for zeolite beta. We use machine learning to replace a computationally expensive molecular dynamics evaluation of the stabilization energy of the OSDA inside zeolite beta with a neural network prediction....
Autores principales: | Daeyaert, Frits, Ye, Fengdan, Deem, Michael W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397530/ https://www.ncbi.nlm.nih.gov/pubmed/30733290 http://dx.doi.org/10.1073/pnas.1818763116 |
Ejemplares similares
-
Design of organic structure directing agents to control the synthesis of zeolites for carbon capture and storage
por: Daeyaert, Frits, et al.
Publicado: (2019) -
Design of organic structure directing agents to guide the synthesis of zeolites for the separation of ethylene–ethane mixtures
por: Daeyaert, Frits, et al.
Publicado: (2020) -
Nanoporous materials with predicted zeolite topologies
por: Blatov, Vladislav A., et al.
Publicado: (2020) -
Solid solution of a zeolite and a framework-bound OSDA-containing molecular sieve
por: Lee, Jun Kyu, et al.
Publicado: (2016) -
Discovering Relationships between OSDAs and Zeolites
through Data Mining and Generative Neural Networks
por: Jensen, Zach, et al.
Publicado: (2021)