Cargando…
Differential Proliferation Effects after Short-Term Cultivation of Mouse Spermatogonial Stem Cells on Different Feeder Layers
OBJECTIVE: Spermatogonial stem cells (SSCs) provide the cellular basis for sperm production transforming the male’s genetic information to the next generation. We aimed to examine the effect of different feeder layer on proliferation of SSCs. MATERIALS AND METHODS: In this experimental study, we com...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royan Institute
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397599/ https://www.ncbi.nlm.nih.gov/pubmed/30825292 http://dx.doi.org/10.22074/cellj.2019.5802 |
_version_ | 1783399437813415936 |
---|---|
author | Azizi, Hossein Ghasemi Hamidabadi, Hatef Skutella, Thomas |
author_facet | Azizi, Hossein Ghasemi Hamidabadi, Hatef Skutella, Thomas |
author_sort | Azizi, Hossein |
collection | PubMed |
description | OBJECTIVE: Spermatogonial stem cells (SSCs) provide the cellular basis for sperm production transforming the male’s genetic information to the next generation. We aimed to examine the effect of different feeder layer on proliferation of SSCs. MATERIALS AND METHODS: In this experimental study, we compared the in vitro effects of the co-culture of mouse SSCs with mouse embryonic fibroblasts (MEFs), sandos inbred mice (SIM) embryo-derived thioguanine- and ouabain- resistant (STO) feeders, and neonate and adult testicular stroma cell (TSC) feeders on the efficiency of mouse SSC proliferation and colony formation. Cells were cultivated on top of MEFs, STO, and neonate and adult TSCs feeder layers for 30 days. The number and diameter of colonies and also the number of cells were evaluated during day 7, 15, 25, and 30 of culture. The mRNA expression of germ cells and somatic cells were analyzed. RESULTS: In our study, we observed a significant difference in the proliferation rates and colony size of SSCs among the groups, especially for MEFs (P<0.05). SSCs can proliferate on MEFS, but not on STO, neonate or adult TSCs. Using immunocytochemistry by KI67 the proliferative activities of SSC colonies on MEFs were confirmed. The results of Fluidigm real-time polymerase chain reaction (RT-PCR) showed a high expression of the germ cell genes the promyelocytic leukemia zinc finger protein (PLZF), deleted in azoospermia-like (DAZL), octamer-binding transcription factor 4 (OCT4), and DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 (DDX4 or VASA) in SSCs, and a low expression of these genes in the feeder layers. Furthermore, we observed a higher expression of vimentin and integrin-B1 in feeder layers than in SSCs (P<0.05). CONCLUSION: Based on the optimal effect of MEFs for better colonization of SSCs, these feeder cells seem to be appropriate candidates for SSC cultures prior to transplantation. Therefore, it is suggested using these feeder cells for SSC cultivation. |
format | Online Article Text |
id | pubmed-6397599 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Royan Institute |
record_format | MEDLINE/PubMed |
spelling | pubmed-63975992019-07-01 Differential Proliferation Effects after Short-Term Cultivation of Mouse Spermatogonial Stem Cells on Different Feeder Layers Azizi, Hossein Ghasemi Hamidabadi, Hatef Skutella, Thomas Cell J Original Article OBJECTIVE: Spermatogonial stem cells (SSCs) provide the cellular basis for sperm production transforming the male’s genetic information to the next generation. We aimed to examine the effect of different feeder layer on proliferation of SSCs. MATERIALS AND METHODS: In this experimental study, we compared the in vitro effects of the co-culture of mouse SSCs with mouse embryonic fibroblasts (MEFs), sandos inbred mice (SIM) embryo-derived thioguanine- and ouabain- resistant (STO) feeders, and neonate and adult testicular stroma cell (TSC) feeders on the efficiency of mouse SSC proliferation and colony formation. Cells were cultivated on top of MEFs, STO, and neonate and adult TSCs feeder layers for 30 days. The number and diameter of colonies and also the number of cells were evaluated during day 7, 15, 25, and 30 of culture. The mRNA expression of germ cells and somatic cells were analyzed. RESULTS: In our study, we observed a significant difference in the proliferation rates and colony size of SSCs among the groups, especially for MEFs (P<0.05). SSCs can proliferate on MEFS, but not on STO, neonate or adult TSCs. Using immunocytochemistry by KI67 the proliferative activities of SSC colonies on MEFs were confirmed. The results of Fluidigm real-time polymerase chain reaction (RT-PCR) showed a high expression of the germ cell genes the promyelocytic leukemia zinc finger protein (PLZF), deleted in azoospermia-like (DAZL), octamer-binding transcription factor 4 (OCT4), and DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 (DDX4 or VASA) in SSCs, and a low expression of these genes in the feeder layers. Furthermore, we observed a higher expression of vimentin and integrin-B1 in feeder layers than in SSCs (P<0.05). CONCLUSION: Based on the optimal effect of MEFs for better colonization of SSCs, these feeder cells seem to be appropriate candidates for SSC cultures prior to transplantation. Therefore, it is suggested using these feeder cells for SSC cultivation. Royan Institute 2019 2019-02-25 /pmc/articles/PMC6397599/ /pubmed/30825292 http://dx.doi.org/10.22074/cellj.2019.5802 Text en The Cell Journal (Yakhteh) is an open access journal which means the articles are freely available online for any individual author to download and use the providing address. http://creativecommons.org/licenses/by/3.0/ The journal is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported License which allows the author(s) to hold the copyright without restrictions that is permitting unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited. |
spellingShingle | Original Article Azizi, Hossein Ghasemi Hamidabadi, Hatef Skutella, Thomas Differential Proliferation Effects after Short-Term Cultivation of Mouse Spermatogonial Stem Cells on Different Feeder Layers |
title | Differential Proliferation Effects after Short-Term Cultivation of
Mouse Spermatogonial Stem Cells on Different Feeder Layers |
title_full | Differential Proliferation Effects after Short-Term Cultivation of
Mouse Spermatogonial Stem Cells on Different Feeder Layers |
title_fullStr | Differential Proliferation Effects after Short-Term Cultivation of
Mouse Spermatogonial Stem Cells on Different Feeder Layers |
title_full_unstemmed | Differential Proliferation Effects after Short-Term Cultivation of
Mouse Spermatogonial Stem Cells on Different Feeder Layers |
title_short | Differential Proliferation Effects after Short-Term Cultivation of
Mouse Spermatogonial Stem Cells on Different Feeder Layers |
title_sort | differential proliferation effects after short-term cultivation of
mouse spermatogonial stem cells on different feeder layers |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397599/ https://www.ncbi.nlm.nih.gov/pubmed/30825292 http://dx.doi.org/10.22074/cellj.2019.5802 |
work_keys_str_mv | AT azizihossein differentialproliferationeffectsaftershorttermcultivationofmousespermatogonialstemcellsondifferentfeederlayers AT ghasemihamidabadihatef differentialproliferationeffectsaftershorttermcultivationofmousespermatogonialstemcellsondifferentfeederlayers AT skutellathomas differentialproliferationeffectsaftershorttermcultivationofmousespermatogonialstemcellsondifferentfeederlayers |