Cargando…
Glaucoma Diagnosis with Machine Learning Based on Optical Coherence Tomography and Color Fundus Images
This study aimed to develop a machine learning-based algorithm for glaucoma diagnosis in patients with open-angle glaucoma, based on three-dimensional optical coherence tomography (OCT) data and color fundus images. In this study, 208 glaucomatous and 149 healthy eyes were enrolled, and color fundus...
Autores principales: | An, Guangzhou, Omodaka, Kazuko, Hashimoto, Kazuki, Tsuda, Satoru, Shiga, Yukihiro, Takada, Naoko, Kikawa, Tsutomu, Yokota, Hideo, Akiba, Masahiro, Nakazawa, Toru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397963/ https://www.ncbi.nlm.nih.gov/pubmed/30911364 http://dx.doi.org/10.1155/2019/4061313 |
Ejemplares similares
-
Comparison of Machine-Learning Classification Models for Glaucoma Management
por: An, Guangzhou, et al.
Publicado: (2018) -
Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters
por: Omodaka, Kazuko, et al.
Publicado: (2017) -
Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography
por: Omodaka, Kazuko, et al.
Publicado: (2018) -
OCT-Based Quantification and Classification of Optic Disc Structure in Glaucoma Patients
por: Takada, Naoko, et al.
Publicado: (2016) -
The association between oxidative stress and corneal hysteresis in patients with glaucoma
por: Uchida, Keiko, et al.
Publicado: (2020)