Cargando…

High Glucose Enhances Bupivacaine-Induced Neurotoxicity via MCU-Mediated Oxidative Stress in SH-SY5Y Cells

Bupivacaine, a typical local anesthetic, induces neurotoxicity via reactive oxygen species regulation of apoptosis. High glucose could enhance bupivacaine-induced neurotoxicity through regulating oxidative stress, but the mechanism of it is not clear. Mitochondrial calcium uniporter (MCU), a key cha...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zhong-Jie, Zhao, Wei, Lei, Hong-Yi, Xu, Hua-Li, Lai, Lu-Ying, Xu, Rui, Xu, Shi-Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398017/
https://www.ncbi.nlm.nih.gov/pubmed/30911349
http://dx.doi.org/10.1155/2019/7192798
Descripción
Sumario:Bupivacaine, a typical local anesthetic, induces neurotoxicity via reactive oxygen species regulation of apoptosis. High glucose could enhance bupivacaine-induced neurotoxicity through regulating oxidative stress, but the mechanism of it is not clear. Mitochondrial calcium uniporter (MCU), a key channel for regulating the mitochondrial Ca(2+) (mCa(2+)) influx, is closely related to oxidative stress via disruption of mCa(2+) homeostasis. Whether MCU is involved in high glucose-sensitized bupivacaine-induced neurotoxicity remains unknown. In this study, human neuroblastoma (SH-SY5Y) cells were cultured with high glucose and/or bupivacaine, and the data showed that high glucose enhanced bupivacaine-induced MCU expression elevation, mCa(2+) accumulation, and oxidative damage. Next, Ru360, an inhibitor of MCU, was employed to pretreated SH-SY5Y cells, and the results showed that it could decrease high glucose and bupivacaine-induced mCa(2+) accumulation, oxidative stress, and apoptosis. Further, with the knockdown of MCU with a specific small interfering RNA (siRNA) in SH-SY5Y cells, we found that it also could inhibit high glucose and bupivacaine-induced mCa(2+) accumulation, oxidative stress, and apoptosis. We propose that downregulation expression or activity inhibition of the MCU channel might be useful for restoring the mitochondrial function and combating high glucose and bupivacaine-induced neurotoxicity. In conclusion, our study demonstrated the crucial role of MCU in high glucose-mediated enhancement of bupivacaine-induced neurotoxicity, suggesting the possible use of this channel as a target for curing bupivacaine-induced neurotoxicity in diabetic patients.