Cargando…
MoDeSuS: A Machine Learning Tool for Selection of Molecular Descriptors in QSAR Studies Applied to Molecular Informatics
The selection of the most relevant molecular descriptors to describe a target variable in the context of QSAR (Quantitative Structure-Activity Relationship) modelling is a challenging combinatorial optimization problem. In this paper, a novel software tool for addressing this task in the context of...
Autores principales: | Martínez, María Jimena, Razuc, Marina, Ponzoni, Ignacio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398071/ https://www.ncbi.nlm.nih.gov/pubmed/30906770 http://dx.doi.org/10.1155/2019/2905203 |
Ejemplares similares
-
Visual analytics in cheminformatics: user-supervised descriptor selection for QSAR methods
por: Martínez, María Jimena, et al.
Publicado: (2015) -
Intercorrelation Limits in Molecular Descriptor Preselection for QSAR/QSPR
por: Rácz, Anita, et al.
Publicado: (2019) -
The Qsar Study of Azole Derivatives Using Molecular Descriptors for Quantum Molecular States
por: AMZOIU, M.O., et al.
Publicado: (2016) -
BCL::EMAS — Enantioselective Molecular Asymmetry Descriptor for 3D-QSAR
por: Sliwoski, Gregory, et al.
Publicado: (2012) -
Molecular Descriptors,
Structure Generation, and Inverse
QSAR/QSPR Based on SELFIES
por: Kaneko, Hiromasa
Publicado: (2023)