Cargando…
A simplified approach using Taqman low-density array for medulloblastoma subgrouping
Next-generation sequencing platforms are routinely used for molecular assignment due to their high impact for risk stratification and prognosis in medulloblastomas. Yet, low and middle-income countries still lack an accurate cost-effective platform to perform this allocation. TaqMan Low Density arra...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398239/ https://www.ncbi.nlm.nih.gov/pubmed/30832734 http://dx.doi.org/10.1186/s40478-019-0681-y |
_version_ | 1783399546757316608 |
---|---|
author | Cruzeiro, Gustavo Alencastro Veiga Salomão, Karina Bezerra de Biagi Jr, Carlos Alberto Oliveira Baumgartner, Martin Sturm, Dominik Lira, Régia Caroline Peixoto de Almeida Magalhães, Taciani Baroni Milan, Mirella da Silva Silveira, Vanessa Saggioro, Fabiano Pinto de Oliveira, Ricardo Santos dos Santos Klinger, Paulo Henrique Seidinger, Ana Luiza Yunes, José Andrés de Paula Queiroz, Rosane Gomes Oba-Shinjo, Sueli Mieko Scrideli, Carlos Alberto Nagahashi, Suely Marie Kazue Tone, Luiz Gonzaga Valera, Elvis Terci |
author_facet | Cruzeiro, Gustavo Alencastro Veiga Salomão, Karina Bezerra de Biagi Jr, Carlos Alberto Oliveira Baumgartner, Martin Sturm, Dominik Lira, Régia Caroline Peixoto de Almeida Magalhães, Taciani Baroni Milan, Mirella da Silva Silveira, Vanessa Saggioro, Fabiano Pinto de Oliveira, Ricardo Santos dos Santos Klinger, Paulo Henrique Seidinger, Ana Luiza Yunes, José Andrés de Paula Queiroz, Rosane Gomes Oba-Shinjo, Sueli Mieko Scrideli, Carlos Alberto Nagahashi, Suely Marie Kazue Tone, Luiz Gonzaga Valera, Elvis Terci |
author_sort | Cruzeiro, Gustavo Alencastro Veiga |
collection | PubMed |
description | Next-generation sequencing platforms are routinely used for molecular assignment due to their high impact for risk stratification and prognosis in medulloblastomas. Yet, low and middle-income countries still lack an accurate cost-effective platform to perform this allocation. TaqMan Low Density array (TLDA) assay was performed using a set of 20 genes in 92 medulloblastoma samples. The same methodology was assessed in silico using microarray data for 763 medulloblastoma samples from the GSE85217 study, which performed MB classification by a robust integrative method (Transcriptional, Methylation and cytogenetic profile). Furthermore, we validated in 11 MBs samples our proposed method by Methylation Array 450 K to assess methylation profile along with 390 MB samples (GSE109381) and copy number variations. TLDA with only 20 genes accurately assigned MB samples into WNT, SHH, Group 3 and Group 4 using Pearson distance with the average-linkage algorithm and showed concordance with molecular assignment provided by Methylation Array 450 k. Similarly, we tested this simplified set of gene signatures in 763 MB samples and we were able to recapitulate molecular assignment with an accuracy of 99.1% (SHH), 94.29% (WNT), 92.36% (Group 3) and 95.40% (Group 4), against 97.31, 97.14, 88.89 and 97.24% (respectively) with the Ward.D2 algorithm. t-SNE analysis revealed a high level of concordance (k = 4) with minor overlapping features between Group 3 and Group 4. Finally, we condensed the number of genes to 6 without significantly losing accuracy in classifying samples into SHH, WNT and non-SHH/non-WNT subgroups. Additionally, we found a relatively high frequency of WNT subgroup in our cohort, which requires further epidemiological studies. TLDA is a rapid, simple and cost-effective assay for classifying MB in low/middle income countries. A simplified method using six genes and restricting the final stratification into SHH, WNT and non-SHH/non-WNT appears to be a very interesting approach for rapid clinical decision-making. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40478-019-0681-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6398239 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-63982392019-03-13 A simplified approach using Taqman low-density array for medulloblastoma subgrouping Cruzeiro, Gustavo Alencastro Veiga Salomão, Karina Bezerra de Biagi Jr, Carlos Alberto Oliveira Baumgartner, Martin Sturm, Dominik Lira, Régia Caroline Peixoto de Almeida Magalhães, Taciani Baroni Milan, Mirella da Silva Silveira, Vanessa Saggioro, Fabiano Pinto de Oliveira, Ricardo Santos dos Santos Klinger, Paulo Henrique Seidinger, Ana Luiza Yunes, José Andrés de Paula Queiroz, Rosane Gomes Oba-Shinjo, Sueli Mieko Scrideli, Carlos Alberto Nagahashi, Suely Marie Kazue Tone, Luiz Gonzaga Valera, Elvis Terci Acta Neuropathol Commun Research Next-generation sequencing platforms are routinely used for molecular assignment due to their high impact for risk stratification and prognosis in medulloblastomas. Yet, low and middle-income countries still lack an accurate cost-effective platform to perform this allocation. TaqMan Low Density array (TLDA) assay was performed using a set of 20 genes in 92 medulloblastoma samples. The same methodology was assessed in silico using microarray data for 763 medulloblastoma samples from the GSE85217 study, which performed MB classification by a robust integrative method (Transcriptional, Methylation and cytogenetic profile). Furthermore, we validated in 11 MBs samples our proposed method by Methylation Array 450 K to assess methylation profile along with 390 MB samples (GSE109381) and copy number variations. TLDA with only 20 genes accurately assigned MB samples into WNT, SHH, Group 3 and Group 4 using Pearson distance with the average-linkage algorithm and showed concordance with molecular assignment provided by Methylation Array 450 k. Similarly, we tested this simplified set of gene signatures in 763 MB samples and we were able to recapitulate molecular assignment with an accuracy of 99.1% (SHH), 94.29% (WNT), 92.36% (Group 3) and 95.40% (Group 4), against 97.31, 97.14, 88.89 and 97.24% (respectively) with the Ward.D2 algorithm. t-SNE analysis revealed a high level of concordance (k = 4) with minor overlapping features between Group 3 and Group 4. Finally, we condensed the number of genes to 6 without significantly losing accuracy in classifying samples into SHH, WNT and non-SHH/non-WNT subgroups. Additionally, we found a relatively high frequency of WNT subgroup in our cohort, which requires further epidemiological studies. TLDA is a rapid, simple and cost-effective assay for classifying MB in low/middle income countries. A simplified method using six genes and restricting the final stratification into SHH, WNT and non-SHH/non-WNT appears to be a very interesting approach for rapid clinical decision-making. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40478-019-0681-y) contains supplementary material, which is available to authorized users. BioMed Central 2019-03-04 /pmc/articles/PMC6398239/ /pubmed/30832734 http://dx.doi.org/10.1186/s40478-019-0681-y Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Cruzeiro, Gustavo Alencastro Veiga Salomão, Karina Bezerra de Biagi Jr, Carlos Alberto Oliveira Baumgartner, Martin Sturm, Dominik Lira, Régia Caroline Peixoto de Almeida Magalhães, Taciani Baroni Milan, Mirella da Silva Silveira, Vanessa Saggioro, Fabiano Pinto de Oliveira, Ricardo Santos dos Santos Klinger, Paulo Henrique Seidinger, Ana Luiza Yunes, José Andrés de Paula Queiroz, Rosane Gomes Oba-Shinjo, Sueli Mieko Scrideli, Carlos Alberto Nagahashi, Suely Marie Kazue Tone, Luiz Gonzaga Valera, Elvis Terci A simplified approach using Taqman low-density array for medulloblastoma subgrouping |
title | A simplified approach using Taqman low-density array for medulloblastoma subgrouping |
title_full | A simplified approach using Taqman low-density array for medulloblastoma subgrouping |
title_fullStr | A simplified approach using Taqman low-density array for medulloblastoma subgrouping |
title_full_unstemmed | A simplified approach using Taqman low-density array for medulloblastoma subgrouping |
title_short | A simplified approach using Taqman low-density array for medulloblastoma subgrouping |
title_sort | simplified approach using taqman low-density array for medulloblastoma subgrouping |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398239/ https://www.ncbi.nlm.nih.gov/pubmed/30832734 http://dx.doi.org/10.1186/s40478-019-0681-y |
work_keys_str_mv | AT cruzeirogustavoalencastroveiga asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT salomaokarinabezerra asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT debiagijrcarlosalbertooliveira asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT baumgartnermartin asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT sturmdominik asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT liraregiacarolinepeixoto asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT dealmeidamagalhaestaciani asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT baronimilanmirella asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT dasilvasilveiravanessa asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT saggiorofabianopinto asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT deoliveiraricardosantos asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT dossantosklingerpaulohenrique asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT seidingeranaluiza asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT yunesjoseandres asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT depaulaqueirozrosanegomes asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT obashinjosuelimieko asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT scridelicarlosalberto asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT nagahashisuelymariekazue asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT toneluizgonzaga asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT valeraelvisterci asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT cruzeirogustavoalencastroveiga simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT salomaokarinabezerra simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT debiagijrcarlosalbertooliveira simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT baumgartnermartin simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT sturmdominik simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT liraregiacarolinepeixoto simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT dealmeidamagalhaestaciani simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT baronimilanmirella simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT dasilvasilveiravanessa simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT saggiorofabianopinto simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT deoliveiraricardosantos simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT dossantosklingerpaulohenrique simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT seidingeranaluiza simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT yunesjoseandres simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT depaulaqueirozrosanegomes simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT obashinjosuelimieko simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT scridelicarlosalberto simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT nagahashisuelymariekazue simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT toneluizgonzaga simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping AT valeraelvisterci simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping |