Cargando…

A simplified approach using Taqman low-density array for medulloblastoma subgrouping

Next-generation sequencing platforms are routinely used for molecular assignment due to their high impact for risk stratification and prognosis in medulloblastomas. Yet, low and middle-income countries still lack an accurate cost-effective platform to perform this allocation. TaqMan Low Density arra...

Descripción completa

Detalles Bibliográficos
Autores principales: Cruzeiro, Gustavo Alencastro Veiga, Salomão, Karina Bezerra, de Biagi Jr, Carlos Alberto Oliveira, Baumgartner, Martin, Sturm, Dominik, Lira, Régia Caroline Peixoto, de Almeida Magalhães, Taciani, Baroni Milan, Mirella, da Silva Silveira, Vanessa, Saggioro, Fabiano Pinto, de Oliveira, Ricardo Santos, dos Santos Klinger, Paulo Henrique, Seidinger, Ana Luiza, Yunes, José Andrés, de Paula Queiroz, Rosane Gomes, Oba-Shinjo, Sueli Mieko, Scrideli, Carlos Alberto, Nagahashi, Suely Marie Kazue, Tone, Luiz Gonzaga, Valera, Elvis Terci
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398239/
https://www.ncbi.nlm.nih.gov/pubmed/30832734
http://dx.doi.org/10.1186/s40478-019-0681-y
_version_ 1783399546757316608
author Cruzeiro, Gustavo Alencastro Veiga
Salomão, Karina Bezerra
de Biagi Jr, Carlos Alberto Oliveira
Baumgartner, Martin
Sturm, Dominik
Lira, Régia Caroline Peixoto
de Almeida Magalhães, Taciani
Baroni Milan, Mirella
da Silva Silveira, Vanessa
Saggioro, Fabiano Pinto
de Oliveira, Ricardo Santos
dos Santos Klinger, Paulo Henrique
Seidinger, Ana Luiza
Yunes, José Andrés
de Paula Queiroz, Rosane Gomes
Oba-Shinjo, Sueli Mieko
Scrideli, Carlos Alberto
Nagahashi, Suely Marie Kazue
Tone, Luiz Gonzaga
Valera, Elvis Terci
author_facet Cruzeiro, Gustavo Alencastro Veiga
Salomão, Karina Bezerra
de Biagi Jr, Carlos Alberto Oliveira
Baumgartner, Martin
Sturm, Dominik
Lira, Régia Caroline Peixoto
de Almeida Magalhães, Taciani
Baroni Milan, Mirella
da Silva Silveira, Vanessa
Saggioro, Fabiano Pinto
de Oliveira, Ricardo Santos
dos Santos Klinger, Paulo Henrique
Seidinger, Ana Luiza
Yunes, José Andrés
de Paula Queiroz, Rosane Gomes
Oba-Shinjo, Sueli Mieko
Scrideli, Carlos Alberto
Nagahashi, Suely Marie Kazue
Tone, Luiz Gonzaga
Valera, Elvis Terci
author_sort Cruzeiro, Gustavo Alencastro Veiga
collection PubMed
description Next-generation sequencing platforms are routinely used for molecular assignment due to their high impact for risk stratification and prognosis in medulloblastomas. Yet, low and middle-income countries still lack an accurate cost-effective platform to perform this allocation. TaqMan Low Density array (TLDA) assay was performed using a set of 20 genes in 92 medulloblastoma samples. The same methodology was assessed in silico using microarray data for 763 medulloblastoma samples from the GSE85217 study, which performed MB classification by a robust integrative method (Transcriptional, Methylation and cytogenetic profile). Furthermore, we validated in 11 MBs samples our proposed method by Methylation Array 450 K to assess methylation profile along with 390 MB samples (GSE109381) and copy number variations. TLDA with only 20 genes accurately assigned MB samples into WNT, SHH, Group 3 and Group 4 using Pearson distance with the average-linkage algorithm and showed concordance with molecular assignment provided by Methylation Array 450 k. Similarly, we tested this simplified set of gene signatures in 763 MB samples and we were able to recapitulate molecular assignment with an accuracy of 99.1% (SHH), 94.29% (WNT), 92.36% (Group 3) and 95.40% (Group 4), against 97.31, 97.14, 88.89 and 97.24% (respectively) with the Ward.D2 algorithm. t-SNE analysis revealed a high level of concordance (k = 4) with minor overlapping features between Group 3 and Group 4. Finally, we condensed the number of genes to 6 without significantly losing accuracy in classifying samples into SHH, WNT and non-SHH/non-WNT subgroups. Additionally, we found a relatively high frequency of WNT subgroup in our cohort, which requires further epidemiological studies. TLDA is a rapid, simple and cost-effective assay for classifying MB in low/middle income countries. A simplified method using six genes and restricting the final stratification into SHH, WNT and non-SHH/non-WNT appears to be a very interesting approach for rapid clinical decision-making. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40478-019-0681-y) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6398239
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-63982392019-03-13 A simplified approach using Taqman low-density array for medulloblastoma subgrouping Cruzeiro, Gustavo Alencastro Veiga Salomão, Karina Bezerra de Biagi Jr, Carlos Alberto Oliveira Baumgartner, Martin Sturm, Dominik Lira, Régia Caroline Peixoto de Almeida Magalhães, Taciani Baroni Milan, Mirella da Silva Silveira, Vanessa Saggioro, Fabiano Pinto de Oliveira, Ricardo Santos dos Santos Klinger, Paulo Henrique Seidinger, Ana Luiza Yunes, José Andrés de Paula Queiroz, Rosane Gomes Oba-Shinjo, Sueli Mieko Scrideli, Carlos Alberto Nagahashi, Suely Marie Kazue Tone, Luiz Gonzaga Valera, Elvis Terci Acta Neuropathol Commun Research Next-generation sequencing platforms are routinely used for molecular assignment due to their high impact for risk stratification and prognosis in medulloblastomas. Yet, low and middle-income countries still lack an accurate cost-effective platform to perform this allocation. TaqMan Low Density array (TLDA) assay was performed using a set of 20 genes in 92 medulloblastoma samples. The same methodology was assessed in silico using microarray data for 763 medulloblastoma samples from the GSE85217 study, which performed MB classification by a robust integrative method (Transcriptional, Methylation and cytogenetic profile). Furthermore, we validated in 11 MBs samples our proposed method by Methylation Array 450 K to assess methylation profile along with 390 MB samples (GSE109381) and copy number variations. TLDA with only 20 genes accurately assigned MB samples into WNT, SHH, Group 3 and Group 4 using Pearson distance with the average-linkage algorithm and showed concordance with molecular assignment provided by Methylation Array 450 k. Similarly, we tested this simplified set of gene signatures in 763 MB samples and we were able to recapitulate molecular assignment with an accuracy of 99.1% (SHH), 94.29% (WNT), 92.36% (Group 3) and 95.40% (Group 4), against 97.31, 97.14, 88.89 and 97.24% (respectively) with the Ward.D2 algorithm. t-SNE analysis revealed a high level of concordance (k = 4) with minor overlapping features between Group 3 and Group 4. Finally, we condensed the number of genes to 6 without significantly losing accuracy in classifying samples into SHH, WNT and non-SHH/non-WNT subgroups. Additionally, we found a relatively high frequency of WNT subgroup in our cohort, which requires further epidemiological studies. TLDA is a rapid, simple and cost-effective assay for classifying MB in low/middle income countries. A simplified method using six genes and restricting the final stratification into SHH, WNT and non-SHH/non-WNT appears to be a very interesting approach for rapid clinical decision-making. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40478-019-0681-y) contains supplementary material, which is available to authorized users. BioMed Central 2019-03-04 /pmc/articles/PMC6398239/ /pubmed/30832734 http://dx.doi.org/10.1186/s40478-019-0681-y Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Cruzeiro, Gustavo Alencastro Veiga
Salomão, Karina Bezerra
de Biagi Jr, Carlos Alberto Oliveira
Baumgartner, Martin
Sturm, Dominik
Lira, Régia Caroline Peixoto
de Almeida Magalhães, Taciani
Baroni Milan, Mirella
da Silva Silveira, Vanessa
Saggioro, Fabiano Pinto
de Oliveira, Ricardo Santos
dos Santos Klinger, Paulo Henrique
Seidinger, Ana Luiza
Yunes, José Andrés
de Paula Queiroz, Rosane Gomes
Oba-Shinjo, Sueli Mieko
Scrideli, Carlos Alberto
Nagahashi, Suely Marie Kazue
Tone, Luiz Gonzaga
Valera, Elvis Terci
A simplified approach using Taqman low-density array for medulloblastoma subgrouping
title A simplified approach using Taqman low-density array for medulloblastoma subgrouping
title_full A simplified approach using Taqman low-density array for medulloblastoma subgrouping
title_fullStr A simplified approach using Taqman low-density array for medulloblastoma subgrouping
title_full_unstemmed A simplified approach using Taqman low-density array for medulloblastoma subgrouping
title_short A simplified approach using Taqman low-density array for medulloblastoma subgrouping
title_sort simplified approach using taqman low-density array for medulloblastoma subgrouping
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398239/
https://www.ncbi.nlm.nih.gov/pubmed/30832734
http://dx.doi.org/10.1186/s40478-019-0681-y
work_keys_str_mv AT cruzeirogustavoalencastroveiga asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT salomaokarinabezerra asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT debiagijrcarlosalbertooliveira asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT baumgartnermartin asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT sturmdominik asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT liraregiacarolinepeixoto asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT dealmeidamagalhaestaciani asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT baronimilanmirella asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT dasilvasilveiravanessa asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT saggiorofabianopinto asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT deoliveiraricardosantos asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT dossantosklingerpaulohenrique asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT seidingeranaluiza asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT yunesjoseandres asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT depaulaqueirozrosanegomes asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT obashinjosuelimieko asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT scridelicarlosalberto asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT nagahashisuelymariekazue asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT toneluizgonzaga asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT valeraelvisterci asimplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT cruzeirogustavoalencastroveiga simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT salomaokarinabezerra simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT debiagijrcarlosalbertooliveira simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT baumgartnermartin simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT sturmdominik simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT liraregiacarolinepeixoto simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT dealmeidamagalhaestaciani simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT baronimilanmirella simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT dasilvasilveiravanessa simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT saggiorofabianopinto simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT deoliveiraricardosantos simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT dossantosklingerpaulohenrique simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT seidingeranaluiza simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT yunesjoseandres simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT depaulaqueirozrosanegomes simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT obashinjosuelimieko simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT scridelicarlosalberto simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT nagahashisuelymariekazue simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT toneluizgonzaga simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping
AT valeraelvisterci simplifiedapproachusingtaqmanlowdensityarrayformedulloblastomasubgrouping