Cargando…
An interpretable machine learning model for diagnosis of Alzheimer's disease
We present an interpretable machine learning model for medical diagnosis called sparse high-order interaction model with rejection option (SHIMR). A decision tree explains to a patient the diagnosis with a long rule (i.e., conjunction of many intervals), while SHIMR employs a weighted sum of short r...
Autores principales: | Das, Diptesh, Ito, Junichi, Kadowaki, Tadashi, Tsuda, Koji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398390/ https://www.ncbi.nlm.nih.gov/pubmed/30842909 http://dx.doi.org/10.7717/peerj.6543 |
Ejemplares similares
-
Comparison of machine learning approaches for enhancing Alzheimer’s disease classification
por: Li, Qi, et al.
Publicado: (2021) -
An interpretable time series machine learning method for varying forecast and nowcast lengths in wastewater-based epidemiology
por: Lai, Mallory, et al.
Publicado: (2023) -
Genetic variations analysis for complex brain disease diagnosis using machine learning techniques: opportunities and hurdles
por: Ahmed, Hala, et al.
Publicado: (2021) -
Diagnosis of vertebral column pathologies using concatenated resampling with machine learning algorithms
por: Reshi, Aijaz Ahmad, et al.
Publicado: (2021) -
An ensemble machine learning model based on multiple filtering and supervised attribute clustering algorithm for classifying cancer samples
por: Bose, Shilpi, et al.
Publicado: (2021)