Cargando…

The Arf-GDP-regulated recruitment of GBF1 to Golgi membranes requires domains HDS1 and HDS2 and a Golgi-localized protein receptor

We previously proposed a novel mechanism by which the enzyme Golgi-specific Brefeldin A resistance factor 1 (GBF1) is recruited to the membranes of the cis-Golgi, based on in vivo experiments. Here, we extended our in vivo analysis on the production of regulatory Arf-GDP and observed that ArfGAP2 an...

Descripción completa

Detalles Bibliográficos
Autores principales: Quilty, Douglas, Chan, Calvin J., Yurkiw, Katherine, Bain, Alexandra, Babolmorad, Ghazal, Melançon, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398479/
https://www.ncbi.nlm.nih.gov/pubmed/29507113
http://dx.doi.org/10.1242/jcs.208199
Descripción
Sumario:We previously proposed a novel mechanism by which the enzyme Golgi-specific Brefeldin A resistance factor 1 (GBF1) is recruited to the membranes of the cis-Golgi, based on in vivo experiments. Here, we extended our in vivo analysis on the production of regulatory Arf-GDP and observed that ArfGAP2 and ArfGAP3 do not play a role in GBF1 recruitment. We confirm that Arf-GDP localization is critical, as a TGN-localized Arf-GDP mutant protein fails to promote GBF1 recruitment. We also reported the establishment of an in vitro GBF1 recruitment assay that supports the regulation of GBF1 recruitment by Arf-GDP. This in vitro assay yielded further evidence for the requirement of a Golgi-localized protein because heat denaturation or protease treatment of Golgi membranes abrogated GBF1 recruitment. Finally, combined in vivo and in vitro measurements indicated that the recruitment to Golgi membranes via a putative receptor requires only the HDS1 and HDS2 domains in the C-terminal half of GBF1.