Cargando…

An Assessment of the Impact of Land Thermal Infrared Observation on Regional Weather Forecasts Using Two Different Data Assimilation Approaches

Recent studies have shown the unique value of satellite-observed land surface thermal infrared (TIR) information (e.g., skin temperature) and the feasibility of assimilating land surface temperature (LST) into land surface models (LSMs) to improve the simulation of land-atmosphere water and energy e...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Li, Zhan, Xiwu, Hain, Christopher R., Yin, Jifu, Liu, Jicheng, Schull, Mitchell A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398617/
https://www.ncbi.nlm.nih.gov/pubmed/30847249
http://dx.doi.org/10.3390/rs10040625
_version_ 1783399608009883648
author Fang, Li
Zhan, Xiwu
Hain, Christopher R.
Yin, Jifu
Liu, Jicheng
Schull, Mitchell A.
author_facet Fang, Li
Zhan, Xiwu
Hain, Christopher R.
Yin, Jifu
Liu, Jicheng
Schull, Mitchell A.
author_sort Fang, Li
collection PubMed
description Recent studies have shown the unique value of satellite-observed land surface thermal infrared (TIR) information (e.g., skin temperature) and the feasibility of assimilating land surface temperature (LST) into land surface models (LSMs) to improve the simulation of land-atmosphere water and energy exchanges. In this study, two different types of LST assimilation techniques are implemented and the benefits from the techniques are compared. One of the techniques is to directly assimilate LST using ensemble Kalman filter (EnKF) data assimilation (DA) utilities. The other is to use the Atmosphere-Land Exchange Inversion model (ALEXI) as an “observation operator” that converts LST retrievals into the soil moisture (SM) proxy based on the ratio of actual to potential evapotranspiration (fPET), which is then assimilated into an LSM. While most current studies have shown some success in both directly the assimilating LST and assimilating ALEXI SM proxy into offline LSMs, the potential impact of the assimilation of TIR information through coupled numerical weather prediction (NWP) models is unclear. In this study, a semi-coupled Land Information System (LIS) and Weather Research and Forecast (WRF) system is employed to assess the impact of the two different techniques for assimilating the TIR observations from NOAA GOES satellites on WRF model forecasts. The NASA LIS, equipped with a variety of LSMs and advanced data assimilation tools (e.g., the ensemble Kalman Filter (EnKF)), takes atmospheric forcing data from the WRF model run, generates updated initial land surface conditions with the assimilation of either LST- or TIR-based SM and returns them to WRF for initializing the forecasts. The WRF forecasts using the daily updated initializations with the TIR data assimilation are evaluated against ground weather observations and re-analysis products. It is found that WRF forecasts with the LST-based SM assimilation have better agreement with the ground weather observations than those with the direct LST assimilation or without the land TIR data assimilation.
format Online
Article
Text
id pubmed-6398617
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-63986172019-04-18 An Assessment of the Impact of Land Thermal Infrared Observation on Regional Weather Forecasts Using Two Different Data Assimilation Approaches Fang, Li Zhan, Xiwu Hain, Christopher R. Yin, Jifu Liu, Jicheng Schull, Mitchell A. Remote Sens (Basel) Article Recent studies have shown the unique value of satellite-observed land surface thermal infrared (TIR) information (e.g., skin temperature) and the feasibility of assimilating land surface temperature (LST) into land surface models (LSMs) to improve the simulation of land-atmosphere water and energy exchanges. In this study, two different types of LST assimilation techniques are implemented and the benefits from the techniques are compared. One of the techniques is to directly assimilate LST using ensemble Kalman filter (EnKF) data assimilation (DA) utilities. The other is to use the Atmosphere-Land Exchange Inversion model (ALEXI) as an “observation operator” that converts LST retrievals into the soil moisture (SM) proxy based on the ratio of actual to potential evapotranspiration (fPET), which is then assimilated into an LSM. While most current studies have shown some success in both directly the assimilating LST and assimilating ALEXI SM proxy into offline LSMs, the potential impact of the assimilation of TIR information through coupled numerical weather prediction (NWP) models is unclear. In this study, a semi-coupled Land Information System (LIS) and Weather Research and Forecast (WRF) system is employed to assess the impact of the two different techniques for assimilating the TIR observations from NOAA GOES satellites on WRF model forecasts. The NASA LIS, equipped with a variety of LSMs and advanced data assimilation tools (e.g., the ensemble Kalman Filter (EnKF)), takes atmospheric forcing data from the WRF model run, generates updated initial land surface conditions with the assimilation of either LST- or TIR-based SM and returns them to WRF for initializing the forecasts. The WRF forecasts using the daily updated initializations with the TIR data assimilation are evaluated against ground weather observations and re-analysis products. It is found that WRF forecasts with the LST-based SM assimilation have better agreement with the ground weather observations than those with the direct LST assimilation or without the land TIR data assimilation. 2018-04-18 2018 /pmc/articles/PMC6398617/ /pubmed/30847249 http://dx.doi.org/10.3390/rs10040625 Text en Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Fang, Li
Zhan, Xiwu
Hain, Christopher R.
Yin, Jifu
Liu, Jicheng
Schull, Mitchell A.
An Assessment of the Impact of Land Thermal Infrared Observation on Regional Weather Forecasts Using Two Different Data Assimilation Approaches
title An Assessment of the Impact of Land Thermal Infrared Observation on Regional Weather Forecasts Using Two Different Data Assimilation Approaches
title_full An Assessment of the Impact of Land Thermal Infrared Observation on Regional Weather Forecasts Using Two Different Data Assimilation Approaches
title_fullStr An Assessment of the Impact of Land Thermal Infrared Observation on Regional Weather Forecasts Using Two Different Data Assimilation Approaches
title_full_unstemmed An Assessment of the Impact of Land Thermal Infrared Observation on Regional Weather Forecasts Using Two Different Data Assimilation Approaches
title_short An Assessment of the Impact of Land Thermal Infrared Observation on Regional Weather Forecasts Using Two Different Data Assimilation Approaches
title_sort assessment of the impact of land thermal infrared observation on regional weather forecasts using two different data assimilation approaches
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398617/
https://www.ncbi.nlm.nih.gov/pubmed/30847249
http://dx.doi.org/10.3390/rs10040625
work_keys_str_mv AT fangli anassessmentoftheimpactoflandthermalinfraredobservationonregionalweatherforecastsusingtwodifferentdataassimilationapproaches
AT zhanxiwu anassessmentoftheimpactoflandthermalinfraredobservationonregionalweatherforecastsusingtwodifferentdataassimilationapproaches
AT hainchristopherr anassessmentoftheimpactoflandthermalinfraredobservationonregionalweatherforecastsusingtwodifferentdataassimilationapproaches
AT yinjifu anassessmentoftheimpactoflandthermalinfraredobservationonregionalweatherforecastsusingtwodifferentdataassimilationapproaches
AT liujicheng anassessmentoftheimpactoflandthermalinfraredobservationonregionalweatherforecastsusingtwodifferentdataassimilationapproaches
AT schullmitchella anassessmentoftheimpactoflandthermalinfraredobservationonregionalweatherforecastsusingtwodifferentdataassimilationapproaches
AT fangli assessmentoftheimpactoflandthermalinfraredobservationonregionalweatherforecastsusingtwodifferentdataassimilationapproaches
AT zhanxiwu assessmentoftheimpactoflandthermalinfraredobservationonregionalweatherforecastsusingtwodifferentdataassimilationapproaches
AT hainchristopherr assessmentoftheimpactoflandthermalinfraredobservationonregionalweatherforecastsusingtwodifferentdataassimilationapproaches
AT yinjifu assessmentoftheimpactoflandthermalinfraredobservationonregionalweatherforecastsusingtwodifferentdataassimilationapproaches
AT liujicheng assessmentoftheimpactoflandthermalinfraredobservationonregionalweatherforecastsusingtwodifferentdataassimilationapproaches
AT schullmitchella assessmentoftheimpactoflandthermalinfraredobservationonregionalweatherforecastsusingtwodifferentdataassimilationapproaches