Cargando…
Using Dispensing Data to Evaluate Adherence Implementation Rates in Community Pharmacy
Background: Medication non-adherence remains a significant problem for the health care system with clinical, humanistic and economic impact. Dispensing data is a valuable and commonly utilized measure due accessibility in electronic health data. The purpose of this study was to analyze the changes o...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399119/ https://www.ncbi.nlm.nih.gov/pubmed/30863308 http://dx.doi.org/10.3389/fphar.2019.00130 |
_version_ | 1783399687825391616 |
---|---|
author | Torres-Robles, Andrea Wiecek, Elyssa Cutler, Rachelle Drake, Barry Benrimoj, Shalom I. Fernandez-Llimos, Fernando Garcia-Cardenas, Victoria |
author_facet | Torres-Robles, Andrea Wiecek, Elyssa Cutler, Rachelle Drake, Barry Benrimoj, Shalom I. Fernandez-Llimos, Fernando Garcia-Cardenas, Victoria |
author_sort | Torres-Robles, Andrea |
collection | PubMed |
description | Background: Medication non-adherence remains a significant problem for the health care system with clinical, humanistic and economic impact. Dispensing data is a valuable and commonly utilized measure due accessibility in electronic health data. The purpose of this study was to analyze the changes on adherence implementation rates before and after a community pharmacist intervention integrated in usual real life practice, incorporating big data analysis techniques to evaluate Proportion of Days Covered (PDC) from pharmacy dispensing data. Methods: Retrospective observational study. A de-identified database of dispensing data from 20,335 patients (n = 11,257 on rosuvastatin, n = 6,797 on irbesartan, and n = 2,281 on desvenlafaxine) was analyzed. Included patients received a pharmacist-led medication adherence intervention and had dispensing records before and after the intervention. As a measure of adherence implementation, PDC was utilized. Analysis of the database was performed using SQL and Python. Results: Three months after the pharmacist intervention there was an increase on average PDC from 50.2% (SD: 30.1) to 66.9% (SD: 29.9) for rosuvastatin, from 50.8% (SD: 30.3) to 68% (SD: 29.3) for irbesartan and from 47.3% (SD: 28.4) to 66.3% (SD: 27.3) for desvenlafaxine. These rates declined over 12 months to 62.1% (SD: 32.0) for rosuvastatin, to 62.4% (SD: 32.5) for irbesartan and to 58.1% (SD: 31.1) for desvenlafaxine. In terms of the proportion of adherent patients (PDC >= 80.0%) the trend was similar, increasing after the pharmacist intervention from overall 17.4 to 41.2% and decreasing after one year of analysis to 35.3%. Conclusion: Big database analysis techniques provided results on adherence implementation over 2 years of analysis. An increase in adherence rates was observed after the pharmacist intervention, followed by a gradual decrease over time. Enhancing the current intervention using an evidence-based approach and integrating big database analysis techniques to a real-time measurement of adherence could help community pharmacies improve and sustain medication adherence. |
format | Online Article Text |
id | pubmed-6399119 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63991192019-03-12 Using Dispensing Data to Evaluate Adherence Implementation Rates in Community Pharmacy Torres-Robles, Andrea Wiecek, Elyssa Cutler, Rachelle Drake, Barry Benrimoj, Shalom I. Fernandez-Llimos, Fernando Garcia-Cardenas, Victoria Front Pharmacol Pharmacology Background: Medication non-adherence remains a significant problem for the health care system with clinical, humanistic and economic impact. Dispensing data is a valuable and commonly utilized measure due accessibility in electronic health data. The purpose of this study was to analyze the changes on adherence implementation rates before and after a community pharmacist intervention integrated in usual real life practice, incorporating big data analysis techniques to evaluate Proportion of Days Covered (PDC) from pharmacy dispensing data. Methods: Retrospective observational study. A de-identified database of dispensing data from 20,335 patients (n = 11,257 on rosuvastatin, n = 6,797 on irbesartan, and n = 2,281 on desvenlafaxine) was analyzed. Included patients received a pharmacist-led medication adherence intervention and had dispensing records before and after the intervention. As a measure of adherence implementation, PDC was utilized. Analysis of the database was performed using SQL and Python. Results: Three months after the pharmacist intervention there was an increase on average PDC from 50.2% (SD: 30.1) to 66.9% (SD: 29.9) for rosuvastatin, from 50.8% (SD: 30.3) to 68% (SD: 29.3) for irbesartan and from 47.3% (SD: 28.4) to 66.3% (SD: 27.3) for desvenlafaxine. These rates declined over 12 months to 62.1% (SD: 32.0) for rosuvastatin, to 62.4% (SD: 32.5) for irbesartan and to 58.1% (SD: 31.1) for desvenlafaxine. In terms of the proportion of adherent patients (PDC >= 80.0%) the trend was similar, increasing after the pharmacist intervention from overall 17.4 to 41.2% and decreasing after one year of analysis to 35.3%. Conclusion: Big database analysis techniques provided results on adherence implementation over 2 years of analysis. An increase in adherence rates was observed after the pharmacist intervention, followed by a gradual decrease over time. Enhancing the current intervention using an evidence-based approach and integrating big database analysis techniques to a real-time measurement of adherence could help community pharmacies improve and sustain medication adherence. Frontiers Media S.A. 2019-02-26 /pmc/articles/PMC6399119/ /pubmed/30863308 http://dx.doi.org/10.3389/fphar.2019.00130 Text en Copyright © 2019 Torres-Robles, Wiecek, Cutler, Drake, Benrimoj, Fernandez-Llimos and Garcia-Cardenas. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Torres-Robles, Andrea Wiecek, Elyssa Cutler, Rachelle Drake, Barry Benrimoj, Shalom I. Fernandez-Llimos, Fernando Garcia-Cardenas, Victoria Using Dispensing Data to Evaluate Adherence Implementation Rates in Community Pharmacy |
title | Using Dispensing Data to Evaluate Adherence Implementation Rates in Community Pharmacy |
title_full | Using Dispensing Data to Evaluate Adherence Implementation Rates in Community Pharmacy |
title_fullStr | Using Dispensing Data to Evaluate Adherence Implementation Rates in Community Pharmacy |
title_full_unstemmed | Using Dispensing Data to Evaluate Adherence Implementation Rates in Community Pharmacy |
title_short | Using Dispensing Data to Evaluate Adherence Implementation Rates in Community Pharmacy |
title_sort | using dispensing data to evaluate adherence implementation rates in community pharmacy |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399119/ https://www.ncbi.nlm.nih.gov/pubmed/30863308 http://dx.doi.org/10.3389/fphar.2019.00130 |
work_keys_str_mv | AT torresroblesandrea usingdispensingdatatoevaluateadherenceimplementationratesincommunitypharmacy AT wiecekelyssa usingdispensingdatatoevaluateadherenceimplementationratesincommunitypharmacy AT cutlerrachelle usingdispensingdatatoevaluateadherenceimplementationratesincommunitypharmacy AT drakebarry usingdispensingdatatoevaluateadherenceimplementationratesincommunitypharmacy AT benrimojshalomi usingdispensingdatatoevaluateadherenceimplementationratesincommunitypharmacy AT fernandezllimosfernando usingdispensingdatatoevaluateadherenceimplementationratesincommunitypharmacy AT garciacardenasvictoria usingdispensingdatatoevaluateadherenceimplementationratesincommunitypharmacy |