Cargando…
Dysfunctional high-density lipoprotein activates toll-like receptors via serum amyloid A in vascular smooth muscle cells
Serum amyloid A (SAA) is an uremic toxin and acute phase protein. It accumulates under inflammatory conditions associated with high cardiovascular morbidity and mortality in patients with sepsis or end-stage renal disease (ESRD). SAA is an apolipoprotein of the high-density lipoprotein (HDL). SAA ac...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399289/ https://www.ncbi.nlm.nih.gov/pubmed/30833653 http://dx.doi.org/10.1038/s41598-019-39846-3 |
Sumario: | Serum amyloid A (SAA) is an uremic toxin and acute phase protein. It accumulates under inflammatory conditions associated with high cardiovascular morbidity and mortality in patients with sepsis or end-stage renal disease (ESRD). SAA is an apolipoprotein of the high-density lipoprotein (HDL). SAA accumulation turns HDL from an anti-inflammatory to a pro-inflammatory particle. SAA activates monocyte chemoattractant protein-1 (MCP-1) in vascular smooth muscle cells. However, the SAA receptor-mediated signaling pathway in vascular cells is poorly understood. Therefore, the SAA-mediated signaling pathway for MCP-1 production was investigated in this study. The SAA-induced MCP-1 production is dependent on the activation of TLR2 and TLR4 as determined by studies with specific receptor antagonists and agonists or siRNA approach. Experiments were confirmed in tissues from TLR2 knockout, TLR4 deficient and TLR2 knock-out/TLR4 deficient mice. The intracellular signaling pathway is IκBα and subsequently NFκB dependent. The MCP-1 production induced by SAA-enriched HDL and HDL isolated from septic patients with high SAA content is also TLR2 and TLR4 dependent. Taken together, the TLR2 and TLR4 receptors are functional SAA receptors mediating MCP-1 release. Furthermore, the TLR2 and TLR4 are receptors for dysfunctional HDL. These results give a further inside in SAA as uremic toxin involved in uremia-related pro-inflammatory response in the vascular wall. |
---|