Cargando…
Deep convolutional neural networks for accurate somatic mutation detection
Accurate detection of somatic mutations is still a challenge in cancer analysis. Here we present NeuSomatic, the first convolutional neural network approach for somatic mutation detection, which significantly outperforms previous methods on different sequencing platforms, sequencing strategies, and...
Autores principales: | Sahraeian, Sayed Mohammad Ebrahim, Liu, Ruolin, Lau, Bayo, Podesta, Karl, Mohiyuddin, Marghoob, Lam, Hugo Y. K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399298/ https://www.ncbi.nlm.nih.gov/pubmed/30833567 http://dx.doi.org/10.1038/s41467-019-09027-x |
Ejemplares similares
-
Achieving robust somatic mutation detection with deep learning models derived from reference data sets of a cancer sample
por: Sahraeian, Sayed Mohammad Ebrahim, et al.
Publicado: (2022) -
An ensemble approach to accurately detect somatic mutations using SomaticSeq
por: Fang, Li Tai, et al.
Publicado: (2015) -
SMETANA: Accurate and Scalable Algorithm for Probabilistic Alignment of Large-Scale Biological Networks
por: Sahraeian, Sayed Mohammad Ebrahim, et al.
Publicado: (2013) -
ecTMB: a robust method to estimate and classify tumor mutational burden
por: Yao, Lijing, et al.
Publicado: (2020) -
LongISLND: in silico sequencing of lengthy and noisy datatypes
por: Lau, Bayo, et al.
Publicado: (2016)