Cargando…
Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks
Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep...
Autores principales: | Wei, Jason W., Tafe, Laura J., Linnik, Yevgeniy A., Vaickus, Louis J., Tomita, Naofumi, Hassanpour, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399447/ https://www.ncbi.nlm.nih.gov/pubmed/30833650 http://dx.doi.org/10.1038/s41598-019-40041-7 |
Ejemplares similares
-
Development and evaluation of a deep neural network for histologic classification of renal cell carcinoma on biopsy and surgical resection slides
por: Zhu, Mengdan, et al.
Publicado: (2021) -
Evaluation of a Deep Neural Network for Automated Classification of Colorectal Polyps on Histopathologic Slides
por: Wei, Jason W., et al.
Publicado: (2020) -
Predicting oncogene mutations of lung cancer using deep learning and histopathologic features on whole-slide images
por: Tomita, Naofumi, et al.
Publicado: (2022) -
Attention-Based Deep Neural Networks for Detection of Cancerous and Precancerous Esophagus Tissue on Histopathological Slides
por: Tomita, Naofumi, et al.
Publicado: (2019) -
Topological Feature Extraction and Visualization of Whole Slide Images using Graph Neural Networks
por: Levy, Joshua, et al.
Publicado: (2021)