Cargando…
Maximizing Interpretability and Cost-Effectiveness of Surgical Site Infection (SSI) Predictive Models Using Feature-Specific Regularized Logistic Regression on Preoperative Temporal Data
This study describes a novel approach to solve the surgical site infection (SSI) classification problem. Feature engineering has traditionally been one of the most important steps in solving complex classification problems, especially in cases with temporal data. The described novel approach is base...
Autores principales: | Kocbek, Primoz, Fijacko, Nino, Soguero-Ruiz, Cristina, Mikalsen, Karl Øyvind, Maver, Uros, Povalej Brzan, Petra, Stozer, Andraz, Jenssen, Robert, Skrøvseth, Stein Olav, Stiglic, Gregor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399553/ https://www.ncbi.nlm.nih.gov/pubmed/30915154 http://dx.doi.org/10.1155/2019/2059851 |
Ejemplares similares
-
Comprehensible Predictive Modeling Using Regularized Logistic Regression and Comorbidity Based Features
por: Stiglic, Gregor, et al.
Publicado: (2015) -
Extracting New Temporal Features to Improve the Interpretability of Undiagnosed Type 2 Diabetes Mellitus Prediction Models
por: Kocbek, Simon, et al.
Publicado: (2022) -
Building interpretable models for polypharmacy prediction in older chronic patients based on drug prescription records
por: Kocbek, Simon, et al.
Publicado: (2018) -
Sentiment Analysis of Social Media Users’ Emotional Response to Sudden Cardiac Arrest During a Football Broadcast
por: Fijačko, Nino, et al.
Publicado: (2023) -
A Review of Mortality Risk Prediction Models in Smartphone Applications
por: Fijačko, Nino, et al.
Publicado: (2021)