Cargando…
Application of 3D Computed Tomography Reconstruction Images to Assess the Thickness and Dimensions of the Posterior Palatal Seal Area
Few studies have been reported on the scientific measurements of the thickness and dimensions of the posterior palatal seal (PPS) area. The purpose of this study is to measure and analyze the thickness of palatal mucosa by using a three-dimensional (3D) model reconstructed with computed tomography (...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399559/ https://www.ncbi.nlm.nih.gov/pubmed/30911548 http://dx.doi.org/10.1155/2019/7912371 |
Sumario: | Few studies have been reported on the scientific measurements of the thickness and dimensions of the posterior palatal seal (PPS) area. The purpose of this study is to measure and analyze the thickness of palatal mucosa by using a three-dimensional (3D) model reconstructed with computed tomography (CT) images and to present objective values by identifying the PPS area. The CT images were reconstructed as a 3D model by separating the maxillary palate mucosa and teeth. Each reconstructed model was analyzed and the thickness was measured at 93 crossing points of each divided plane. The dimension of the PPS area was measured and the right and left dimensions of the PPS area were compared. The thickness of the palatal mucosa was thicker toward the posterior area. The thickness increased in the lateral direction and decreased again. In the PPS area, the mean dimension between the rearmost of anterior border and the most posterior line was 2.19 mm and the mean dimension between the forefront of anterior border and the most posterior line was 5.19 mm in the right side and 5.16 mm in the left side. The mean dimension from the center of the palate to the right most forward point was 6.85 mm, and the left was 7.36 mm. The new measurement method of palatal mucosal thickness is noninvasive, accurate, and easy to store and study, so it can be used effectively in planning and manufacturing the maxillary complete denture in the digital workflows. |
---|