Cargando…
A greedy feature selection algorithm for Big Data of high dimensionality
We present the Parallel, Forward–Backward with Pruning (PFBP) algorithm for feature selection (FS) for Big Data of high dimensionality. PFBP partitions the data matrix both in terms of rows as well as columns. By employing the concepts of p-values of conditional independence tests and meta-analysis...
Autores principales: | Tsamardinos, Ioannis, Borboudakis, Giorgos, Katsogridakis, Pavlos, Pratikakis, Polyvios, Christophides, Vassilis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399683/ https://www.ncbi.nlm.nih.gov/pubmed/30906113 http://dx.doi.org/10.1007/s10994-018-5748-7 |
Ejemplares similares
-
Extending greedy feature selection algorithms to multiple solutions
por: Borboudakis, Giorgos, et al.
Publicado: (2021) -
Constraint-based causal discovery with mixed data
por: Tsagris, Michail, et al.
Publicado: (2018) -
Just Add Data: automated predictive modeling for knowledge discovery and feature selection
por: Tsamardinos, Ioannis, et al.
Publicado: (2022) -
Bootstrapping the out-of-sample predictions for efficient and accurate cross-validation
por: Tsamardinos, Ioannis, et al.
Publicado: (2018) -
Feature selection for high-dimensional temporal data
por: Tsagris, Michail, et al.
Publicado: (2018)