Cargando…
Architectures and accuracy of artificial neural network for disease classification from omics data
BACKGROUND: Deep learning has made tremendous successes in numerous artificial intelligence applications and is unsurprisingly penetrating into various biomedical domains. High-throughput omics data in the form of molecular profile matrices, such as transcriptomes and metabolomes, have long existed...
Autores principales: | Yu, Hui, Samuels, David C., Zhao, Ying-yong, Guo, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399893/ https://www.ncbi.nlm.nih.gov/pubmed/30832569 http://dx.doi.org/10.1186/s12864-019-5546-z |
Ejemplares similares
-
Artificial neural network with Taguchi method for robust classification model to improve classification accuracy of breast cancer
por: Rahman, Md Akizur, et al.
Publicado: (2021) -
Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data
por: Ching, Travers, et al.
Publicado: (2018) -
Llaima volcano dataset: In-depth comparison of deep artificial neural network architectures on seismic events classification
por: Canário, João Paulo, et al.
Publicado: (2020) -
Application of a Brain-Inspired Spiking Neural Network Architecture to Odor Data Classification
por: Vanarse, Anup, et al.
Publicado: (2020) -
Combining Neuroimaging and Omics Datasets for Disease Classification Using Graph Neural Networks
por: Chan, Yi Hao, et al.
Publicado: (2022)